Project

General

Profile

OsmoTRX » History » Version 36

9600, 02/19/2016 10:47 PM
Formatted git clone text so that cut and paste works, and prepended missing autoreconf step to build instructions.

1 34 ipse
[[PageOutline]]
2 1 ttsou
= OsmoTRX =
3 1 ttsou
4 1 ttsou
OsmoTRX is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
5 1 ttsou
 * TS 05.01 "Physical layer on the radio path"
6 1 ttsou
 * TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
7 1 ttsou
 * TS 05.04 "Modulation"
8 1 ttsou
 * TS 05.10 "Radio subsystem synchronization"
9 1 ttsou
10 29 ttsou
OsmoTRX is based on the OpenBTS transceiver, but setup to operate independently with the purpose of using with non-OpenBTS software and projects. Currently there are numerous features contained in OsmoTRX that extend the functionality of the OpenBTS transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves UmTRX. Most of these features will eventually be merged into mainline OpenBTS, but development will occur primarily on OsmoTRX.
11 6 ttsou
12 6 ttsou
== Features ==
13 6 ttsou
14 16 ttsou
'''Intel SSE Support'''
15 6 ttsou
* SSE3
16 6 ttsou
* SSE4.1
17 6 ttsou
18 20 ttsou
On Intel processors, OsmoTRX makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
19 1 ttsou
20 26 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
21 20 ttsou
22 29 ttsou
'''ARM Support'''
23 6 ttsou
* NEON
24 1 ttsou
* NEON-VFPv4
25 6 ttsou
26 20 ttsou
OsmoTRX runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
27 1 ttsou
28 20 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
29 20 ttsou
30 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
31 20 ttsou
32 6 ttsou
'''Dual Channel (UmTRX only)'''
33 7 ttsou
34 7 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
35 7 ttsou
path of the dual channel device - currently only UmTRX - supports a different ARFCN. Each path operates independently a
36 28 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
37 1 ttsou
38 8 ttsou
'''Dual Channel Diversity (UmTRX only)'''
39 1 ttsou
40 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
41 16 ttsou
42 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
43 20 ttsou
44 33 ttsou
'''Improved Receiver'''
45 30 ttsou
46 30 ttsou
OsmoTRX utilizes a recently updated receive burst detection algorithm that provides greater sensitivity and reliability than the previous approach, which relied on energy detection for the initial stage of burst acquisition.
47 30 ttsou
48 30 ttsou
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
49 30 ttsou
50 30 ttsou
The current receiver code removes those limitations. Noise and signal level measurements are also now handled in a more responsive manner.
51 30 ttsou
52 16 ttsou
'''Low Phase Error Modulator'''
53 16 ttsou
54 1 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
55 1 ttsou
56 1 ttsou
Theoretical details can be found in the report on [http://tsou.cc/gsm/report_gmsk.pdf GMSK]. Octave / Matlab code for [http://tsou.cc/gsm/laurent.m pulse generation] is also available.
57 28 ttsou
58 28 ttsou
This option can be enabled or disabled at run time from the command line.
59 16 ttsou
60 20 ttsou
Very Low Phase Error (Ettus Research N200)
61 1 ttsou
62 1 ttsou
[[Image(http://tsou.cc/gsm/osmo-trx-phase75.gif)]]
63 1 ttsou
64 21 ttsou
Spectrum Mask (Ettus Research N200)
65 1 ttsou
66 1 ttsou
[[Image(http://tsou.cc/gsm/osmo-trx-spectrum75.gif)]]
67 1 ttsou
68 20 ttsou
== RF Hardware support ==
69 1 ttsou
70 20 ttsou
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the UmTRX from Fairwaves.
71 1 ttsou
72 20 ttsou
||'''Fairwaves'''||'''Notes'''||
73 20 ttsou
||UmTRX||Dual channel||
74 20 ttsou
75 20 ttsou
All Ettus Research devices are supported.
76 20 ttsou
77 20 ttsou
||'''Ettus Research'''||'''Notes'''||
78 20 ttsou
||USRP1||Requires legacy libusrp driver and clocking modification||
79 20 ttsou
||USRP2||10 MHz external reference required||
80 1 ttsou
||B100||
81 1 ttsou
||B110||
82 20 ttsou
||B200||10 MHz external reference recommended||
83 20 ttsou
||B210||* Dual channel, 10 MHz external reference recommended||
84 1 ttsou
||N200||
85 1 ttsou
||N210||
86 1 ttsou
||E100||
87 1 ttsou
||E110||
88 1 ttsou
89 20 ttsou
* Ettus B210 dual channel support with OsmoTRX is currently unavailable, but is expected to be added at a later time.
90 20 ttsou
91 1 ttsou
== Embedded Platform Support ==
92 1 ttsou
93 20 ttsou
OsmoTRX has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
94 1 ttsou
95 20 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
96 20 ttsou
97 20 ttsou
||'''Platform'''||'''SoC'''||'''Processor'''||'''SIMD/FPU'''||'''Testing Notes'''
98 20 ttsou
||!ArndaleBoard||Samsung Exynos 5250||ARM Cortex-A15||NEON-VFPv4||7 TCH||
99 21 ttsou
||!BeagleBoard-xM||Texas Instruments OMAP3||ARM Cortex-A8||NEON||7 TCH, remote OsmoBTS stack||
100 21 ttsou
||Ettus E100||Texas Instruments OMAP3||ARM Cortex-A8||NEON||7 TCH, remote OsmoBTS stack||
101 21 ttsou
||Raspberry Pi||Broadcom BCM2835||ARM11||VFP||2 TCH, remote OsmoBTS stack||
102 1 ttsou
||Shuttle PC||NA||Intel Atom D2550||SSE3||Dual channel, 15 TCH||
103 20 ttsou
104 25 ttsou
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
105 19 ttsou
106 19 ttsou
== Mailing List ==
107 18 ttsou
108 1 ttsou
For development purposes, OsmoTRX is discussed on both OpenBTS and OpenBSC mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
109 1 ttsou
110 22 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
111 19 ttsou
112 16 ttsou
Subscription information is available at [https://lists.sourceforge.net/lists/listinfo/openbts-discuss] and [http://lists.osmocom.org/mailman/listinfo/openbsc/].
113 19 ttsou
114 19 ttsou
== GPRS support ==
115 16 ttsou
116 1 ttsou
OsmoTRX supports GPRS through OsmoBTS.
117 16 ttsou
118 1 ttsou
For GPRS support with OpenBTS, please use the transceiver supplied with OpenBTS.
119 1 ttsou
120 1 ttsou
== Source code ==
121 16 ttsou
122 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
123 1 ttsou
124 1 ttsou
Public read-only access is available via
125 36 9600
{{{
126 36 9600
$ git clone git://git.osmocom.org/osmo-trx
127 36 9600
}}}
128 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
129 18 ttsou
130 18 ttsou
== Configuration and Build ==
131 19 ttsou
132 1 ttsou
The only package dependency is the Universal Hardware Driver (UHD), which is available from Ettus Research or Fairwaves depending on the device. Please note that the UHD implementation must match hardware (i.e. Ettus Research UHD for USRP devices and Fairwaves UHD with UmTRX). The one device that does not use the UHD driver is the USRP1, which is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
133 36 9600
134 36 9600
First, run autoreconf to remake the build system files.
135 36 9600
{{{
136 36 9600
$ autoreconf -i
137 36 9600
...
138 36 9600
}}}
139 1 ttsou
140 18 ttsou
'''Intel Platforms (All)'''
141 18 ttsou
142 18 ttsou
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
143 18 ttsou
{{{
144 18 ttsou
$ ./configure
145 18 ttsou
...
146 1 ttsou
checking whether mmx is supported... yes
147 18 ttsou
checking whether sse is supported... yes
148 18 ttsou
checking whether sse2 is supported... yes
149 18 ttsou
checking whether sse3 is supported... yes
150 18 ttsou
checking whether ssse3 is supported... yes
151 18 ttsou
checking whether sse4.1 is supported... yes
152 1 ttsou
checking whether sse4.2 is supported... yes
153 19 ttsou
...
154 18 ttsou
}}}
155 18 ttsou
156 18 ttsou
'''ARM Platforms with NEON'''
157 18 ttsou
158 18 ttsou
Many popular ARM development boards fall under this category including !BeagleBoard, !PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
159 18 ttsou
{{{
160 19 ttsou
$ ./configure --with-neon
161 18 ttsou
}}}
162 18 ttsou
163 18 ttsou
'''ARM Platforms with NEON-VFPv4'''
164 18 ttsou
165 18 ttsou
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are !ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
166 18 ttsou
{{{
167 18 ttsou
$ ./configure --with-neon-vfpv4
168 18 ttsou
}}}
169 18 ttsou
170 18 ttsou
'''ARM Platforms without NEON'''
171 18 ttsou
172 18 ttsou
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running OsmoTRX. Running OsmoTRX on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
173 1 ttsou
174 24 ttsou
Coming soon...
175 18 ttsou
176 16 ttsou
'''Build and Install'''
177 16 ttsou
178 16 ttsou
After configuration, installation is simple.
179 16 ttsou
180 16 ttsou
{{{
181 18 ttsou
$ make
182 19 ttsou
$ sudo make install
183 16 ttsou
}}}
184 16 ttsou
185 16 ttsou
== Running ==
186 16 ttsou
187 16 ttsou
OsmoTRX can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
188 16 ttsou
189 16 ttsou
{{{
190 16 ttsou
$ osmo-trx -h
191 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
192 16 ttsou
193 16 ttsou
Options:
194 16 ttsou
  -h    This text
195 16 ttsou
  -a    UHD device args
196 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
197 16 ttsou
  -i    IP address of GSM core
198 16 ttsou
  -p    Base port number
199 16 ttsou
  -d    Enable dual channel diversity receiver
200 16 ttsou
  -x    Enable external 10 MHz reference
201 16 ttsou
  -s    Samples-per-symbol (1 or 4)
202 16 ttsou
  -c    Number of ARFCN channels (default=1)
203 16 ttsou
}}}
204 16 ttsou
205 16 ttsou
{{{
206 16 ttsou
$ osmo-trx -a "addr=192.168.10.2"
207 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
208 16 ttsou
209 16 ttsou
Config Settings
210 16 ttsou
   Log Level............... INFO
211 16 ttsou
   Device args............. addr=192.168.10.2
212 16 ttsou
   TRX Base Port........... 5700
213 1 ttsou
   TRX Address............. 127.0.0.1
214 16 ttsou
   Channels................ 1
215 1 ttsou
   Samples-per-Symbol...... 4
216 1 ttsou
   External Reference...... Disabled
217 16 ttsou
   Diversity............... Disabled
218 16 ttsou
219 16 ttsou
-- Opening a UmTRX device...
220 16 ttsou
-- Current recv frame size: 1472 bytes
221 16 ttsou
-- Current send frame size: 1472 bytes
222 16 ttsou
-- Setting UmTRX 4 SPS
223 19 ttsou
-- Transceiver active with 1 channel(s)
224 13 ttsou
}}}
225 19 ttsou
226 19 ttsou
== Benchmarks ==
227 17 ttsou
228 13 ttsou
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in OsmoTRX, but one stop higher in the Layer 1 stack - either in OsmoBTS or OpenBTS core.
229 13 ttsou
230 35 ttsou
'''Repository'''
231 1 ttsou
232 35 ttsou
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as OsmoTRX. The test code may be merged into OsmoTRX at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as OsmoTRX.
233 1 ttsou
234 35 ttsou
{{{
235 35 ttsou
$ git clone https://github.com/ttsou/trx-bench.git
236 35 ttsou
237 35 ttsou
$ cd trx-bench
238 35 ttsou
$ autoreconf -i
239 35 ttsou
$ ./configure [--with-neon] [--with-neon-vfp4]
240 35 ttsou
$ make
241 35 ttsou
$ src/conv_test
242 35 ttsou
$ src/convert_test
243 35 ttsou
$ src/convolve_test
244 35 ttsou
}}}
245 35 ttsou
246 35 ttsou
The convolutional decoding test includes command options including experimental support for benchmarking with multiple threads.
247 35 ttsou
248 35 ttsou
{{{
249 35 ttsou
$ ./conv_test -h
250 35 ttsou
Options:
251 35 ttsou
  -h    This text
252 35 ttsou
  -i    Number of iterations
253 35 ttsou
  -j    Number of threads for benchmark (1 to 32)
254 35 ttsou
  -b    Run benchmark tests
255 35 ttsou
  -a    Run validity checks
256 35 ttsou
  -e    Run bit-error-rate tests
257 35 ttsou
}}}
258 35 ttsou
259 35 ttsou
Selected benchmark results are provided below. All tests are run on a single core only.
260 35 ttsou
261 13 ttsou
'''Intel Haswell (i7 4770K 3.5 GHz)'''
262 13 ttsou
263 13 ttsou
{{{
264 10 ttsou
--- Floating point to integer conversions
265 10 ttsou
-- Testing 40000 iterations of 3120 values
266 1 ttsou
- Measuring conversion time
267 1 ttsou
- Elapsed time base...                  0.065508 secs
268 1 ttsou
- Validating SIMD conversion results... PASS
269 1 ttsou
- Measuring conversion time
270 1 ttsou
- Elapsed time SIMD ...                 0.011424 secs
271 1 ttsou
- Speedup...                            5.734244
272 1 ttsou
}}}
273 1 ttsou
274 1 ttsou
{{{
275 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
276 1 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
277 1 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
278 3 ttsou
[.] Pre computed vector checks:
279 3 ttsou
[..] Encoding: OK
280 3 ttsou
[..] Decoding base: 
281 3 ttsou
[..] Decoding SIMD: 
282 3 ttsou
[..] Code N 3
283 3 ttsou
[..] Code K 7
284 3 ttsou
OK
285 3 ttsou
[.] Random vector checks:
286 3 ttsou
[.] Testing baseline:
287 3 ttsou
[..] Encoding / Decoding 10000 cycles:
288 3 ttsou
[.] Elapsed time........................ 1.435066 secs
289 3 ttsou
[.] Rate................................ 3.121808 Mbps
290 1 ttsou
[.] Testing SIMD:
291 1 ttsou
[..] Encoding / Decoding 10000 cycles:
292 17 ttsou
[.] Elapsed time........................ 0.073524 secs
293 1 ttsou
[.] Rate................................ 60.932485 Mbps
294 1 ttsou
[.] Speedup............................. 19.518334
295 1 ttsou
}}}
296 1 ttsou
297 17 ttsou
'''Intel Atom (D2500 1.86 GHz)'''
298 17 ttsou
{{{
299 17 ttsou
--- Floating point to integer conversions
300 17 ttsou
-- Testing 40000 iterations of 3120 values
301 17 ttsou
- Measuring conversion time
302 17 ttsou
- Elapsed time base...                 1.147449 secs
303 17 ttsou
- Validating SSE conversion results... PASS
304 17 ttsou
- Measuring conversion time
305 17 ttsou
- Elapsed time SSE ...                 0.347838 secs
306 17 ttsou
- Quotient...                          3.298803
307 17 ttsou
}}}
308 17 ttsou
309 17 ttsou
{{{
310 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
311 17 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
312 17 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
313 17 ttsou
[.] Pre computed vector checks:
314 17 ttsou
[..] Encoding: OK
315 17 ttsou
[..] Decoding base: 
316 17 ttsou
[..] Decoding SIMD: 
317 17 ttsou
[..] Code N 3
318 1 ttsou
[..] Code K 7
319 1 ttsou
OK
320 1 ttsou
[.] Random vector checks:
321 17 ttsou
[.] Testing baseline:
322 17 ttsou
[..] Encoding / Decoding 10000 cycles:
323 17 ttsou
[.] Elapsed time........................ 11.822688 secs
324 17 ttsou
[.] Rate................................ 0.378932 Mbps
325 17 ttsou
[.] Testing SIMD:
326 17 ttsou
[..] Encoding / Decoding 10000 cycles:
327 17 ttsou
[.] Elapsed time........................ 0.550423 secs
328 19 ttsou
[.] Rate................................ 8.139195 Mbps
329 19 ttsou
[.] Speedup............................. 21.479277
330 19 ttsou
}}}
331 17 ttsou
332 17 ttsou
'''!ArndaleBoard (ARM Cortex-A15 1.7 GHz)'''
333 17 ttsou
334 17 ttsou
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
335 17 ttsou
336 17 ttsou
{{{
337 17 ttsou
--- Floating point to integer conversions
338 17 ttsou
-- Testing 40000 iterations of 3120 values
339 17 ttsou
- Measuring conversion time
340 17 ttsou
- Elapsed time base...                 0.384097 secs
341 17 ttsou
- Validating SSE conversion results... PASS
342 17 ttsou
- Measuring conversion time
343 17 ttsou
- Elapsed time SSE ...                 0.100877 secs
344 17 ttsou
- Quotient...                          3.807578
345 17 ttsou
}}}
346 17 ttsou
347 17 ttsou
{{{
348 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
349 17 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
350 17 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
351 17 ttsou
[.] Pre computed vector checks:
352 17 ttsou
[..] Encoding: OK
353 17 ttsou
[..] Decoding base: 
354 17 ttsou
[..] Decoding SIMD: 
355 17 ttsou
[..] Code N 3
356 17 ttsou
[..] Code K 7
357 17 ttsou
OK
358 17 ttsou
[.] Random vector checks:
359 17 ttsou
[.] Testing baseline:
360 17 ttsou
[..] Encoding / Decoding 10000 cycles:
361 17 ttsou
[.] Elapsed time........................ 5.371288 secs
362 17 ttsou
[.] Rate................................ 0.834064 Mbps
363 17 ttsou
[.] Testing SIMD:
364 17 ttsou
[..] Encoding / Decoding 10000 cycles:
365 17 ttsou
[.] Elapsed time........................ 1.016621 secs
366 17 ttsou
[.] Rate................................ 4.406755 Mbps
367 17 ttsou
[.] Speedup............................. 5.283471
368 17 ttsou
}}}
369 17 ttsou
370 3 ttsou
'''!BeagleBoard-xM (ARM Cortex-A8 800 MHz)'''
371 3 ttsou
{{{
372 3 ttsou
--- Floating point to integer conversions
373 3 ttsou
-- Testing 40000 iterations of 3120 values
374 3 ttsou
- Measuring conversion time
375 3 ttsou
- Elapsed time base...                  6.292542 secs
376 3 ttsou
- Validating SIMD conversion results... PASS
377 3 ttsou
- Measuring conversion time
378 3 ttsou
- Elapsed time SIMD ...                 0.839081 secs
379 5 ttsou
- Quotient...                           7.499326
380 3 ttsou
}}}
381 3 ttsou
382 3 ttsou
{{{
383 4 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
384 3 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
385 3 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
386 3 ttsou
[.] Pre computed vector checks:
387 1 ttsou
[..] Encoding: OK
388 1 ttsou
[..] Decoding base: 
389 1 ttsou
[..] Decoding SIMD: 
390 31 ttsou
[..] Code N 3
391 31 ttsou
[..] Code K 7
392 31 ttsou
OK
393 31 ttsou
[.] Random vector checks:
394 31 ttsou
[.] Testing baseline:
395 31 ttsou
[..] Encoding / Decoding 10000 cycles:
396 31 ttsou
[.] Elapsed time........................ 21.963257 secs
397 31 ttsou
[.] Rate................................ 0.203977 Mbps
398 31 ttsou
[.] Testing SIMD:
399 1 ttsou
[..] Encoding / Decoding 10000 cycles:
400 32 ttsou
[.] Elapsed time........................ 3.083282 secs
401 32 ttsou
[.] Rate................................ 1.452997 Mbps
402 32 ttsou
[.] Speedup............................. 7.123337
403 32 ttsou
}}}
404 32 ttsou
405 32 ttsou
406 32 ttsou
'''Full Results'''
407 32 ttsou
408 32 ttsou
[http://tsou.cc/gsm/haswell.txt]
409 32 ttsou
410 32 ttsou
[http://tsou.cc/gsm/shuttle.txt]
411 32 ttsou
412 32 ttsou
[http://tsou.cc/gsm/arndale.txt]
413 32 ttsou
414 32 ttsou
[http://tsou.cc/gsm/beagle.txt]
415 32 ttsou
416 31 ttsou
417 1 ttsou
== Authors ==
418 1 ttsou
419 30 ttsou
OsmoTRX is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the OpenBTS project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)