Project

General

Profile

OsmoTRX » History » Version 52

neels, 12/04/2016 07:04 PM

1 41 sylvain
{{>toc}}
2 1 ttsou
3 41 sylvain
h1. [[OsmoTRX]]
4 1 ttsou
5 1 ttsou
6 41 sylvain
[[OsmoTRX]] is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
7 41 sylvain
* TS 05.01 "Physical layer on the radio path"
8 41 sylvain
* TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
9 41 sylvain
* TS 05.04 "Modulation"
10 41 sylvain
* TS 05.10 "Radio subsystem synchronization"
11 1 ttsou
12 49 neels
[[OsmoTRX]] is based on the transceiver code from the [[OsmoBTS:OpenBTS]] project, but setup to operate independently with the purpose of using with non-OpenBTS software and projects, while still maintaining backwards compatibility with [[OsmoBTS:OpenBTS]]. Currently there are numerous features contained in [[OsmoTRX:]] that extend the functionality of the [[OsmoBTS:OpenBTS]] transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves [[umtrx:]].
13 41 sylvain
14 46 laforge
h2. OsmoTRX in the Osmocom GSM architecture
15 46 laforge
16 46 laforge
{{graphviz_link()
17 46 laforge
digraph G {
18 46 laforge
    rankdir = LR;
19 46 laforge
    SDR -> OsmoTRX [label="Raw Samples"];
20 46 laforge
    OsmoTRX -> OsmoBTS [label="bursts over UDP"];
21 46 laforge
    OsmoBTS -> OsmoNITB [label="Abis/IP"];
22 46 laforge
    OsmoBTS -> OsmoPCU [label="pcu_sock"];
23 46 laforge
    OsmoPCU -> OsmoSGSN [label="Gb/IP"];
24 46 laforge
    OsmoTRX [color=red];
25 46 laforge
}
26 46 laforge
}}
27 41 sylvain
28 41 sylvain
h2. Features
29 41 sylvain
30 41 sylvain
31 41 sylvain
*Intel SSE Support*
32 6 ttsou
* SSE3
33 6 ttsou
* SSE4.1
34 20 ttsou
35 41 sylvain
On Intel processors, [[OsmoTRX]] makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
36 1 ttsou
37 20 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
38 29 ttsou
39 41 sylvain
*ARM Support*
40 1 ttsou
* NEON
41 1 ttsou
* NEON-VFPv4
42 20 ttsou
43 41 sylvain
[[OsmoTRX]] runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
44 20 ttsou
45 1 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
46 1 ttsou
47 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
48 37 ttsou
49 41 sylvain
*Dual Channel (UmTRX and B210)*
50 7 ttsou
51 1 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
52 28 ttsou
path of the dual channel device supports a different ARFCN. Each path operates independently a
53 1 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
54 1 ttsou
55 41 sylvain
*Dual Channel Diversity (UmTRX, experimental)*
56 1 ttsou
57 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
58 16 ttsou
59 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
60 20 ttsou
61 41 sylvain
*Uplink Burst Detection*
62 39 ttsou
63 49 neels
[[OsmoTRX]] utilizes an updated receive burst detection algorithm that provides greater sensitivity and reliability than the original [[OsmoBTS:OpenBTS]] approach, which relied on energy detection for the initial stage of burst acquisition.
64 39 ttsou
65 1 ttsou
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
66 1 ttsou
67 1 ttsou
The current receiver code addressed those limitations for improved performance in a wider variety of environments.
68 1 ttsou
69 41 sylvain
*Low Phase Error Modulator*
70 16 ttsou
71 16 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
72 1 ttsou
73 41 sylvain
Theoretical details can be found in the report on "GMSK":http://tsou.cc/gsm/report_gmsk.pdf. Octave / Matlab code for "pulse generation":http://tsou.cc/gsm/laurent.m is also available.
74 1 ttsou
75 1 ttsou
This option can be enabled or disabled at run time from the command line.
76 28 ttsou
77 28 ttsou
Very Low Phase Error (Ettus Research N200)
78 16 ttsou
79 42 laforge
!http://tsou.cc/gsm/osmo-trx-phase75.gif!
80 1 ttsou
81 21 ttsou
Spectrum Mask (Ettus Research N200)
82 1 ttsou
83 42 laforge
!http://tsou.cc/gsm/osmo-trx-spectrum75.gif!
84 1 ttsou
85 41 sylvain
h2. RF Hardware support
86 1 ttsou
87 1 ttsou
88 50 neels
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the [[UmTRX:]] from Fairwaves.
89 41 sylvain
90 41 sylvain
||*Fairwaves*||*Notes*||
91 20 ttsou
||UmTRX||Dual channel||
92 20 ttsou
93 20 ttsou
All Ettus Research devices are supported.
94 1 ttsou
95 41 sylvain
||*Ettus Research*||*Notes*||
96 1 ttsou
||USRP1||Requires legacy libusrp driver and clocking modification||
97 1 ttsou
||USRP2||10 MHz external reference required||
98 1 ttsou
||B100||
99 1 ttsou
||B110||
100 1 ttsou
||B200||GPSDO or 10 MHz external reference recommended||
101 1 ttsou
||B210||Dual channel, 10 MHz external reference recommended||
102 1 ttsou
||N200||
103 20 ttsou
||N210||
104 1 ttsou
||E100||
105 1 ttsou
||E110||
106 1 ttsou
107 41 sylvain
h2. Embedded Platform Support
108 1 ttsou
109 41 sylvain
110 41 sylvain
[[OsmoTRX]] has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
111 41 sylvain
112 1 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
113 1 ttsou
114 43 laforge
|_.Platform|_.SoC*|_.Processor|_.SIMD/FPU|_.Testing Notes|
115 43 laforge
|ArndaleBoard|Samsung Exynos 5250|ARM Cortex-A15|NEON-VFPv4|7 TCH|
116 43 laforge
|BeagleBoard-xM|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
117 43 laforge
|Ettus E100|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
118 43 laforge
|Raspberry Pi|Broadcom BCM2835|ARM11|VFP|2 TCH, remote [[osmobts:]] stack|
119 43 laforge
|Shuttle PC|NA|Intel Atom D2550|SSE3|Dual channel, 15 TCH|
120 1 ttsou
121 1 ttsou
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
122 19 ttsou
123 41 sylvain
h2. Mailing List
124 22 ttsou
125 41 sylvain
126 49 neels
For development purposes, [[OsmoTRX:]] is discussed on both [[OsmoBTS:OpenBTS]] and [[OpenBSC:]] mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
127 41 sylvain
128 1 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
129 41 sylvain
130 47 laforge
Subscription information is available at "and [http://lists.osmocom.org/mailman/listinfo/openbsc/":https://lists.sourceforge.net/lists/listinfo/openbts-discuss].  Please make sure to read our [[cellular-infrastructure:MailingListRules]] before posting.
131 1 ttsou
132 41 sylvain
h2. GPRS support
133 1 ttsou
134 1 ttsou
135 44 laforge
[[OsmoTRX]] supports GPRS through [[osmobts:]].
136 1 ttsou
137 49 neels
For GPRS support with [[OsmoBTS:OpenBTS]], please use the transceiver supplied with [[OsmoBTS:OpenBTS]].
138 41 sylvain
139 41 sylvain
140 41 sylvain
h2. Source code
141 41 sylvain
142 41 sylvain
143 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
144 18 ttsou
145 18 ttsou
Public read-only access is available via
146 41 sylvain
<pre>
147 19 ttsou
$ git clone git://git.osmocom.org/osmo-trx
148 41 sylvain
</pre>
149 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
150 1 ttsou
151 48 neels
h2. Dependencies
152 1 ttsou
153 48 neels
Install libusb-1.0 and libbost dev packages. On debian 8.4:
154 1 ttsou
155 48 neels
<pre>
156 48 neels
sudo apt-get install --no-install-recommends libusb-1.0-0-dev libboost-dev
157 48 neels
</pre>
158 41 sylvain
159 48 neels
*UHD*
160 1 ttsou
161 48 neels
Unless using USRP1, you will need the Universal Hardware Driver (UHD),
162 48 neels
which is available from Ettus Research or Fairwaves; the UHD implementation
163 48 neels
must match your hardware:
164 48 neels
165 48 neels
* Ettus Research UHD for USRP devices
166 51 neels
* Fairwaves UHD with [[UmTRX:]]
167 48 neels
* USRP1 does not use the UHD driver, it is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
168 48 neels
169 48 neels
*Debian*
170 48 neels
171 52 neels
When you are reading this, Debian packages for UHD may be sufficient for running osmo-trx and osmo-bts-trx.
172 48 neels
here are some of the packages that need to be installed:
173 48 neels
174 48 neels
<pre>
175 48 neels
sudo apt-get install --no-install-recommends libuhd-dev uhd-host
176 48 neels
</pre>
177 1 ttsou
178 52 neels
At the time of writing this (2016-12), for Debian 8 aka jessie you need to use the jessie-backports packages:
179 52 neels
180 52 neels
<pre>
181 52 neels
sudo -s
182 52 neels
echo "deb http://ftp.de.debian.org/debian jessie-backports main" > /etc/apt/sources.list.d/uhd.list
183 52 neels
apt-get update
184 52 neels
apt-get -t jessie-backports install libuhd-dev uhd-host
185 52 neels
</pre>
186 52 neels
187 52 neels
It may also be possible to use the pothos PPA instead:
188 48 neels
189 48 neels
<pre>
190 48 neels
sudo add-apt-repository ppa:guruofquality/pothos
191 48 neels
sudo apt-get update
192 48 neels
sudo apt install libboost-dev uhd
193 48 neels
</pre>
194 48 neels
195 48 neels
*Firmware*
196 48 neels
197 48 neels
You also need to download the firmware using a script provided by the UHD package.
198 48 neels
Instructions suggest running the script as root, but this way is less dangerous:
199 48 neels
200 48 neels
<pre>
201 48 neels
sudo mkdir /usr/share/uhd
202 48 neels
sudo chown $USER: /usr/share/uhd
203 48 neels
/usr/lib/uhd/utils/uhd_images_downloader.py
204 48 neels
</pre>
205 48 neels
206 48 neels
*Group*
207 48 neels
208 48 neels
You may need to add yourself to the usrp group:
209 48 neels
210 48 neels
<pre>
211 48 neels
sudo gpasswd -a $USER usrp
212 48 neels
# and re-login to acquire the group
213 48 neels
</pre>
214 48 neels
215 48 neels
*Verify*
216 48 neels
217 48 neels
run uhd_find_devices to make sure b200 is available:
218 48 neels
219 48 neels
<pre>
220 48 neels
$ uhd_find_devices 
221 48 neels
linux; GNU C++ version 4.9.1; Boost_105500; UHD_003.007.003-0-unknown
222 48 neels
223 48 neels
--------------------------------------------------
224 48 neels
-- UHD Device 0
225 48 neels
--------------------------------------------------
226 48 neels
Device Address:
227 48 neels
    type: b200
228 48 neels
    name: MyB210
229 48 neels
    serial: 1C0FFEE
230 48 neels
    product: B210
231 48 neels
</pre>
232 48 neels
233 48 neels
h2. Configuration and Build
234 48 neels
235 41 sylvain
First, run autoreconf to remake the build system files.
236 1 ttsou
<pre>
237 18 ttsou
$ autoreconf -i
238 41 sylvain
...
239 18 ttsou
</pre>
240 41 sylvain
241 18 ttsou
*Intel Platforms (All)*
242 1 ttsou
243 41 sylvain
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
244 18 ttsou
<pre>
245 1 ttsou
$ ./configure
246 1 ttsou
...
247 19 ttsou
checking whether mmx is supported... yes
248 18 ttsou
checking whether sse is supported... yes
249 18 ttsou
checking whether sse2 is supported... yes
250 18 ttsou
checking whether sse3 is supported... yes
251 18 ttsou
checking whether ssse3 is supported... yes
252 18 ttsou
checking whether sse4.1 is supported... yes
253 18 ttsou
checking whether sse4.2 is supported... yes
254 41 sylvain
...
255 18 ttsou
</pre>
256 41 sylvain
257 18 ttsou
*ARM Platforms with NEON*
258 41 sylvain
259 41 sylvain
Many popular ARM development boards fall under this category including BeagleBoard, PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
260 24 ttsou
<pre>
261 41 sylvain
$ ./configure --with-neon
262 1 ttsou
</pre>
263 41 sylvain
264 1 ttsou
*ARM Platforms with NEON-VFPv4*
265 41 sylvain
266 41 sylvain
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
267 1 ttsou
<pre>
268 41 sylvain
$ ./configure --with-neon-vfpv4
269 1 ttsou
</pre>
270 41 sylvain
271 1 ttsou
*ARM Platforms without NEON*
272 41 sylvain
273 1 ttsou
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running [[OsmoTRX]]. Running [[OsmoTRX]] on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
274 1 ttsou
275 1 ttsou
Coming soon...
276 41 sylvain
277 1 ttsou
*Build and Install*
278 16 ttsou
279 16 ttsou
After configuration, installation is simple.
280 41 sylvain
281 16 ttsou
<pre>
282 16 ttsou
$ make
283 41 sylvain
$ sudo make install
284 16 ttsou
</pre>
285 16 ttsou
286 41 sylvain
h2. Running
287 16 ttsou
288 41 sylvain
289 41 sylvain
[[OsmoTRX]] can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
290 41 sylvain
291 41 sylvain
<pre>
292 16 ttsou
$ osmo-trx -h
293 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
294 16 ttsou
295 16 ttsou
Options:
296 16 ttsou
  -h    This text
297 1 ttsou
  -a    UHD device args
298 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
299 16 ttsou
  -i    IP address of GSM core
300 1 ttsou
  -p    Base port number
301 1 ttsou
  -d    Enable dual channel diversity receiver
302 16 ttsou
  -x    Enable external 10 MHz reference
303 16 ttsou
  -s    Samples-per-symbol (1 or 4)
304 38 ttsou
  -c    Number of ARFCN channels (default=1)
305 38 ttsou
  -f    Enable C0 filler table
306 16 ttsou
  -o    Set baseband frequency offset (default=auto)
307 41 sylvain
</pre>
308 16 ttsou
309 41 sylvain
<pre>
310 1 ttsou
$ osmo-trx -a "addr=192.168.10.2"
311 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
312 16 ttsou
313 16 ttsou
Config Settings
314 16 ttsou
   Log Level............... INFO
315 1 ttsou
   Device args............. addr=192.168.10.2
316 16 ttsou
   TRX Base Port........... 5700
317 1 ttsou
   TRX Address............. 127.0.0.1
318 16 ttsou
   Channels................ 1
319 16 ttsou
   Samples-per-Symbol...... 4
320 16 ttsou
   External Reference...... Disabled
321 16 ttsou
   Diversity............... Disabled
322 16 ttsou
323 41 sylvain
-- Opening a [[UmTRX]] device...
324 13 ttsou
-- Current recv frame size: 1472 bytes
325 38 ttsou
-- Current send frame size: 1472 bytes
326 41 sylvain
-- Setting [[UmTRX]] 4 SPS
327 38 ttsou
-- Transceiver active with 1 channel(s)
328 41 sylvain
</pre>
329 38 ttsou
330 1 ttsou
331 49 neels
h2. [[OsmoTRX]] with [[OsmoBTS:OpenBTS]]
332 38 ttsou
333 38 ttsou
334 49 neels
[[OsmoTRX]] is fully compatible with [[OsmoBTS:OpenBTS]] for voice and SMS services. Due to differences in handing of GPRS, [[OsmoTRX]] does not support GPRS when used with [[OsmoBTS:OpenBTS]], however, GPRS with the Osmocom stack is supported.
335 41 sylvain
336 49 neels
For use with [[OsmoBTS:OpenBTS]], enable the filler table option "Enable C0 filler table", which enables [[OsmoBTS:OpenBTS]] style idle bursts and retransmissions.
337 41 sylvain
338 41 sylvain
<pre>
339 1 ttsou
$ osmo-trx -f
340 41 sylvain
</pre>
341 17 ttsou
342 49 neels
The [[OsmoTRX]] transceiver should be started before running [[OsmoBTS:OpenBTS]]. No symbolic link to './transceiver' should exist in the [[OsmoBTS:OpenBTS]] directory. This prevents [[OsmoBTS:OpenBTS]] from starting its own transceiver instance.
343 35 ttsou
344 1 ttsou
345 41 sylvain
h2. Benchmarks
346 1 ttsou
347 35 ttsou
348 49 neels
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in [[OsmoTRX]], but one stop higher in the Layer 1 stack - either in [[osmobts:]] or [[OsmoBTS:OpenBTS]] core.
349 35 ttsou
350 41 sylvain
*Repository*
351 41 sylvain
352 41 sylvain
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as [[OsmoTRX]]. The test code may be merged into [[OsmoTRX]] at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as [[OsmoTRX]].
353 41 sylvain
354 41 sylvain
<pre>
355 35 ttsou
$ git clone https://github.com/ttsou/trx-bench.git
356 35 ttsou
357 35 ttsou
$ cd trx-bench
358 35 ttsou
$ autoreconf -i
359 35 ttsou
$ ./configure [--with-neon] [--with-neon-vfp4]
360 1 ttsou
$ make
361 1 ttsou
$ src/conv_test
362 35 ttsou
$ src/convert_test
363 35 ttsou
$ src/convolve_test
364 41 sylvain
</pre>
365 35 ttsou
366 35 ttsou
The convolutional decoding test includes command options including experimental support for benchmarking with multiple threads.
367 35 ttsou
368 41 sylvain
<pre>
369 35 ttsou
$ ./conv_test -h
370 35 ttsou
Options:
371 35 ttsou
  -h    This text
372 1 ttsou
  -i    Number of iterations
373 1 ttsou
  -j    Number of threads for benchmark (1 to 32)
374 13 ttsou
  -b    Run benchmark tests
375 13 ttsou
  -a    Run validity checks
376 13 ttsou
  -e    Run bit-error-rate tests
377 41 sylvain
</pre>
378 10 ttsou
379 1 ttsou
Selected benchmark results are provided below. All tests are run on a single core only.
380 1 ttsou
381 41 sylvain
*Intel Haswell (i7 4770K 3.5 GHz)*
382 1 ttsou
383 41 sylvain
<pre>
384 1 ttsou
--- Floating point to integer conversions
385 1 ttsou
-- Testing 40000 iterations of 3120 values
386 1 ttsou
- Measuring conversion time
387 1 ttsou
- Elapsed time base...                  0.065508 secs
388 1 ttsou
- Validating SIMD conversion results... PASS
389 3 ttsou
- Measuring conversion time
390 3 ttsou
- Elapsed time SIMD ...                 0.011424 secs
391 3 ttsou
- Speedup...                            5.734244
392 41 sylvain
</pre>
393 1 ttsou
394 41 sylvain
<pre>
395 3 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
396 3 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
397 3 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
398 3 ttsou
[.] Pre computed vector checks:
399 3 ttsou
[..] Encoding: OK
400 3 ttsou
[..] Decoding base: 
401 3 ttsou
[..] Decoding SIMD: 
402 1 ttsou
[..] Code N 3
403 1 ttsou
[..] Code K 7
404 1 ttsou
OK
405 1 ttsou
[.] Random vector checks:
406 1 ttsou
[.] Testing baseline:
407 17 ttsou
[..] Encoding / Decoding 10000 cycles:
408 17 ttsou
[.] Elapsed time........................ 1.435066 secs
409 17 ttsou
[.] Rate................................ 3.121808 Mbps
410 17 ttsou
[.] Testing SIMD:
411 17 ttsou
[..] Encoding / Decoding 10000 cycles:
412 17 ttsou
[.] Elapsed time........................ 0.073524 secs
413 17 ttsou
[.] Rate................................ 60.932485 Mbps
414 17 ttsou
[.] Speedup............................. 19.518334
415 41 sylvain
</pre>
416 17 ttsou
417 41 sylvain
*Intel Atom (D2500 1.86 GHz)*
418 41 sylvain
<pre>
419 17 ttsou
--- Floating point to integer conversions
420 17 ttsou
-- Testing 40000 iterations of 3120 values
421 17 ttsou
- Measuring conversion time
422 17 ttsou
- Elapsed time base...                 1.147449 secs
423 1 ttsou
- Validating SSE conversion results... PASS
424 17 ttsou
- Measuring conversion time
425 1 ttsou
- Elapsed time SSE ...                 0.347838 secs
426 1 ttsou
- Quotient...                          3.298803
427 41 sylvain
</pre>
428 17 ttsou
429 41 sylvain
<pre>
430 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
431 1 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
432 1 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
433 1 ttsou
[.] Pre computed vector checks:
434 17 ttsou
[..] Encoding: OK
435 17 ttsou
[..] Decoding base: 
436 17 ttsou
[..] Decoding SIMD: 
437 17 ttsou
[..] Code N 3
438 17 ttsou
[..] Code K 7
439 17 ttsou
OK
440 17 ttsou
[.] Random vector checks:
441 19 ttsou
[.] Testing baseline:
442 19 ttsou
[..] Encoding / Decoding 10000 cycles:
443 19 ttsou
[.] Elapsed time........................ 11.822688 secs
444 17 ttsou
[.] Rate................................ 0.378932 Mbps
445 17 ttsou
[.] Testing SIMD:
446 17 ttsou
[..] Encoding / Decoding 10000 cycles:
447 17 ttsou
[.] Elapsed time........................ 0.550423 secs
448 17 ttsou
[.] Rate................................ 8.139195 Mbps
449 17 ttsou
[.] Speedup............................. 21.479277
450 41 sylvain
</pre>
451 17 ttsou
452 41 sylvain
*!ArndaleBoard (ARM Cortex-A15 1.7 GHz)*
453 17 ttsou
454 17 ttsou
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
455 17 ttsou
456 41 sylvain
<pre>
457 17 ttsou
--- Floating point to integer conversions
458 17 ttsou
-- Testing 40000 iterations of 3120 values
459 17 ttsou
- Measuring conversion time
460 17 ttsou
- Elapsed time base...                 0.384097 secs
461 17 ttsou
- Validating SSE conversion results... PASS
462 17 ttsou
- Measuring conversion time
463 17 ttsou
- Elapsed time SSE ...                 0.100877 secs
464 17 ttsou
- Quotient...                          3.807578
465 41 sylvain
</pre>
466 17 ttsou
467 41 sylvain
<pre>
468 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
469 17 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
470 17 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
471 17 ttsou
[.] Pre computed vector checks:
472 17 ttsou
[..] Encoding: OK
473 17 ttsou
[..] Decoding base: 
474 17 ttsou
[..] Decoding SIMD: 
475 17 ttsou
[..] Code N 3
476 17 ttsou
[..] Code K 7
477 17 ttsou
OK
478 17 ttsou
[.] Random vector checks:
479 17 ttsou
[.] Testing baseline:
480 17 ttsou
[..] Encoding / Decoding 10000 cycles:
481 17 ttsou
[.] Elapsed time........................ 5.371288 secs
482 17 ttsou
[.] Rate................................ 0.834064 Mbps
483 3 ttsou
[.] Testing SIMD:
484 3 ttsou
[..] Encoding / Decoding 10000 cycles:
485 3 ttsou
[.] Elapsed time........................ 1.016621 secs
486 3 ttsou
[.] Rate................................ 4.406755 Mbps
487 3 ttsou
[.] Speedup............................. 5.283471
488 41 sylvain
</pre>
489 3 ttsou
490 41 sylvain
*!BeagleBoard-xM (ARM Cortex-A8 800 MHz)*
491 41 sylvain
<pre>
492 5 ttsou
--- Floating point to integer conversions
493 3 ttsou
-- Testing 40000 iterations of 3120 values
494 3 ttsou
- Measuring conversion time
495 3 ttsou
- Elapsed time base...                  6.292542 secs
496 4 ttsou
- Validating SIMD conversion results... PASS
497 3 ttsou
- Measuring conversion time
498 3 ttsou
- Elapsed time SIMD ...                 0.839081 secs
499 3 ttsou
- Quotient...                           7.499326
500 41 sylvain
</pre>
501 1 ttsou
502 41 sylvain
<pre>
503 31 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
504 31 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
505 31 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
506 31 ttsou
[.] Pre computed vector checks:
507 31 ttsou
[..] Encoding: OK
508 31 ttsou
[..] Decoding base: 
509 31 ttsou
[..] Decoding SIMD: 
510 31 ttsou
[..] Code N 3
511 31 ttsou
[..] Code K 7
512 1 ttsou
OK
513 32 ttsou
[.] Random vector checks:
514 32 ttsou
[.] Testing baseline:
515 32 ttsou
[..] Encoding / Decoding 10000 cycles:
516 32 ttsou
[.] Elapsed time........................ 21.963257 secs
517 32 ttsou
[.] Rate................................ 0.203977 Mbps
518 32 ttsou
[.] Testing SIMD:
519 32 ttsou
[..] Encoding / Decoding 10000 cycles:
520 32 ttsou
[.] Elapsed time........................ 3.083282 secs
521 32 ttsou
[.] Rate................................ 1.452997 Mbps
522 32 ttsou
[.] Speedup............................. 7.123337
523 41 sylvain
</pre>
524 32 ttsou
525 32 ttsou
526 41 sylvain
*Full Results*
527 32 ttsou
528 41 sylvain
"[http://tsou.cc/gsm/shuttle.txt":http://tsou.cc/gsm/haswell.txt]
529 31 ttsou
530 41 sylvain
"[http://tsou.cc/gsm/beagle.txt":http://tsou.cc/gsm/arndale.txt]
531 1 ttsou
532 30 ttsou
533 1 ttsou
534 41 sylvain
h2. Authors
535 1 ttsou
536 1 ttsou
537 49 neels
[[OsmoTRX]] is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the [[OsmoBTS:OpenBTS]] project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)