
 www.picochip.com

November 26, 2004

picoTools Product Brief

picoTools

picoChip Designs Ltd Preliminary Information Page 1 of 4

Nothing in this document represents a commitment to the specification of the product v1.0

1. Introduction

picoTools are the picoChip tool chain for mapping
designs on to picoArrays. The picoArray is a
massively parallel processor array targeted at
DSP solutions. This approach allows DSP
systems to be specified and verified under one
unified design environment, (picoTools). It enables
much improved system integration times over
conventional/legacy DSPs due to the picoArray
architecture's inherent determinism. Ultimately it
allows a reduced bill of materials due to the
picoArray's cost efficient delivery of MIPS. The
picoTools flow allows functions formally
implemented across ASIC/FPGA and DSP to be
implemented within one processing fabric.

2. picoArray programming

The basic programming model is to describe the
system's processes or tasks in ANSI C or assembler,
with a network of fixed connectivity and of specified
bandwidth. This is a very natural way to describe DSP
systems. This is shown in figure 1.

The interconnect of the processes is defined using the
structural subset of VHDL, a language designed to
specify connectivity.

picoTools assign processes to fixed resources at
compile time. Similarly the interconnect is pre-
assigned to slots of the fabric. In this way there is
no run time scheduling of resources. This means
that the performance of a sub-system is
deterministic whether standalone or integrated into
a full system. This hugely reduces system
integration and verification times.

3. picoTools

The function of picoTools is to implement, debug
and verify systems on picoArrays. It offers an
integrated compiler and assembler, tools to map
the design to picoArrays, and a fully featured
parallel debugger. This debugger can equally well
be used with a program executing on hardware or
on the cycle accurate simulator.

The tool chain development stages are to pass
the entire design through analysis, which extracts
its connectivity. Then the compiler and assembler
act on the actual processes themselves. The

system can then be interactively partitioned across
multiple picoArrays. For each picoArray the
design's processes and signals are automatically
assigned onto the array and fabric. The result of
this assignment or placement can then be used to
either run the design directly on hardware or to
create a simulation.

The debugger has been architected to work on
parallel systems. It allows unlimited processes to
be debugged simultaneously. The whole system
can be single stepped together. Breakpoints or
asserts can be added to any process and cause
the whole system to halt. Each process may be
viewed as source code, disassembly or one
interleaved with the other. The system can be
viewed as a hierarchical or flat graphical network,
where the state of each process is color coded on
the GUI. All of these features provide an excellent
debugging environment.

The tool chain supports the debugging of
hardware through a JTAG connection using
picoICE.

All of the tools can be controlled either using GUIs
or can be scripted in Tcl/Tk. This makes the
interfaces fully extensible, so for example user
defined GUIs can be created for high level
application specific debugging.

4. Supported Platforms

picoTools are available for Linux RedHat 8.0 and
Enterprise 3.0 platforms.

Figure 1 Programming model

instA instB instD

instC

@8 @8

@32

@8 @8

picoTools Product Brief

picoTools

picoChip Designs Ltd Preliminary Information Page 2 of 4

Nothing in this document represents a commitment to the specification of the product v1.0

The design is compiled and
assembled as a whole.

For designs using multiple
picoArrays it can be interactively
partitioned.

The processes are automatically
assigned to processors on the array, and
slots on the bus resource allocated.

Designs can then be targeted at the
cycle accurate simulator or onto
hardware, and debugged with an
identical interface.

The debugger is fully parallel. The
whole system can be single stepped,
or stopped at breakpoints

The project build can all be
controlled from scripted or

GUI of picoDeveloper

ANSI C is compiled
using the gcc compiler

All tools can either be controlled
through GUIs or can be script

controlled using Tcl/Tk

Processes are specified in
ANSI C or assembler.

The process IO and
connectivity are specified in
structural VHDL

The design can be viewed
as a graphical network

using the Design Browser
at all stages of the flow

picoPartition

Compile

picoPlastic

Compile

picoDebugger
(Simulation and hardware)

entity NCO_2 is
generic (FREQ_BASE : integer16);
port (oscillator:out blocking integer16pair@16);

end entity NCO;

architecture C of NCO_2 is
begin ANY
CODE

loop
ADD.0 phase, FREQ_BASE, phase
LSR.0 phase, 8, sine_phase
AND.0 sine_phase, 16#3f#, sine_phase
AND.0 [LSR phase, 14], 1, scratch
if (NONZERO) then

SUB.0 63, sine_phase, sine_phase
end if

LSL.0 sine_phase, 1, AP
LDW (AP), sine
PUT R[5:4], oscillator

end loop
ENDCODE;
end NCO_2

Specify process
function in ASM

Specify process IOentity NCO_2 is
generic (FREQ_BASE : integer16);
port (oscillator:out blocking integer16pair@16);

end entity NCO;

architecture C of NCO_2 is
begin ANY
CODE

loop
ADD.0 phase, FREQ_BASE, phase
LSR.0 phase, 8, sine_phase
AND.0 sine_phase, 16#3f#, sine_phase
AND.0 [LSR phase, 14], 1, scratch
if (NONZERO) then

SUB.0 63, sine_phase, sine_phase
end if

LSL.0 sine_phase, 1, AP
LDW (AP), sine
PUT R[5:4], oscillator

end loop
ENDCODE;
end NCO_2

Specify process
function in ASM

Specify process IOentity NCO is
generic (FREQ_BASE : integer16);
port (oscillator:out blocking integer16pair@16);

end entity NCO;

architecture C of NCO is
begin ANY
CODE
int main() {

integer16pair out_phase;
int sine_phase, sine;

while (1) {
if (quadrant & 1)
sine_phase = ((1 << 6) - 1) - sine_phase ;

sine = sine_lookup[sine_phase];
// invert sine?
if (quadrant & 2) sine = -sine;
out_phase.el1 = 0;
out_phase.el2 = sine;
putoscillator(out_phase);

}
}
ENDCODE
end NCO

Specify process IO

Specify process
function in C

entity NCO is
generic (FREQ_BASE : integer16);
port (oscillator:out blocking integer16pair@16);

end entity NCO;

architecture C of NCO is
begin ANY
CODE
int main() {

integer16pair out_phase;
int sine_phase, sine;

while (1) {
if (quadrant & 1)
sine_phase = ((1 << 6) - 1) - sine_phase ;

sine = sine_lookup[sine_phase];
// invert sine?
if (quadrant & 2) sine = -sine;
out_phase.el1 = 0;
out_phase.el2 = sine;
putoscillator(out_phase);

}
}
ENDCODE
end NCO

Specify process IO

Specify process
function in C

picoTools Product Brief

picoTools

picoChip Designs Ltd Preliminary Information Page 3 of 4

Nothing in this document represents a commitment to the specification of the product v1.0

Programming model and Tools flow
details

Programming

Figure 1 Code example

To build and implement a DSP system on a
picoArray the system is hierarchically
decomposed into a set of communicating tasks or
processes, with a fixed connectivity of a specified
bandwidth. Figure 1 shows an example of code
for such a process. The actual function is defined
inside the CODE ENDCODE section. This can be in
either ANSI C or assembler. The code that
encapsulates this is in the structural subset of
VHDL93. It is used to specify the interfaces of the
block and at higher levels of the hierarchy to
describe how processes interconnect.

This dataflow view of a DSP system is a very
natural way of specifying it, and maps well to the
picoArrays stream based processing.

The hierarchical decomposition results in
individual tasks that are assigned to processors
by the tool chain; one task is mapped to one
processor. In this way each process gets a fixed
resource on which to run. There is no need for an
operating system on a picoArray, since there is no
dynamic scheduling of processes to be done.

Providing fixed resources for both tasks and their
interconnect means that designs have
deterministic behaviour, so as a system is
integrated its parts will continue to operate exactly
as they did when verified alone. This will not be
true of a dynamically scheduled system. This is a

huge advantage in verification intense
applications.

Compilation

A system is read into the elaboration and
compilation step as a whole. The configuration of
a system build can be controlled by the use of
VHDL style libraries and "Use" constructs in the
code. This allows encapsulation of function and
control of the build's function.

The elaboration extracts the process connectivity
from the system, and then farms out the
compilation and assembly of the processes
themselves to the compiler and the assembler.

The compiler is a port of the industry standard gcc
compiler. The C initiates communication on
signals with the calling of to a single argument
built-in.

picoPartition

Figure 2 picoPartition GUI

picoArrays are designed to be cascadable. The
cascading interfaces are an extension of the
processor fabric allowing multiple devices to
operate seamlessly as a single system.

The picoPartition tool allows a system to be
spread over multiple picoArrays.

The configuration of a board in terms of number of
chips and their arrangement is specified to the
partitioning tool. The system itself is then read in
from the compilation phase and can be
interactively split amongst the devices. The tools
automatically deal with the setup and control of
the device interfaces.

Figure 2 shows the picoPartition GUI for a two-
device system. The amount of resource remaining
on the devices during the partition is shown.

entity NCO is
generic (FREQ_BASE : integer16);
port (oscillator:out blocking integer16pair@16);

end entity NCO;

architecture C of NCO is
begin ANY
CODE
int main() {

integer16pair out_phase;
int sine_phase, sine;

while (1) {
if (quadrant & 1)
sine_phase = ((1 << 6) - 1) - sine_phase ;

sine = sine_lookup[sine_phase];
// invert sine?
if (quadrant & 2) sine = -sine;
out_phase.el1 = 0;
out_phase.el2 = sine;
putoscillator(out_phase);

}
}
ENDCODE
end NCO

Specify process IO

Specify process
function in C

entity NCO is
generic (FREQ_BASE : integer16);
port (oscillator:out blocking integer16pair@16);

end entity NCO;

architecture C of NCO is
begin ANY
CODE
int main() {

integer16pair out_phase;
int sine_phase, sine;

while (1) {
if (quadrant & 1)
sine_phase = ((1 << 6) - 1) - sine_phase ;

sine = sine_lookup[sine_phase];
// invert sine?
if (quadrant & 2) sine = -sine;
out_phase.el1 = 0;
out_phase.el2 = sine;
putoscillator(out_phase);

}
}
ENDCODE
end NCO

Specify process IO

Specify process
function in C

picoTools Product Brief

picoTools

picoChip Designs Ltd Preliminary Information Page 4 of 4

Nothing in this document represents a commitment to the specification of the product v1.0

picoPlastic

Figure 3 picoPlastic GUI

picoPlastic is responsible for the assigning of
tasks to processors and allocating the task's
connectivity to time division slots of the picoArrays
fabric. The stage is known as "place and switch".
In effect it is performing the static scheduling of
the fabric.

Each device is "Placed and Switched" individually
in what is an automatic, and largely "push button",
step for the user.

The result of this step is a configuration file or
near boot image for a picoArray.

picoDebugger

Figure 4 picoDebugger instance GUI

picoDebugger is a front end to systems running
on either the cycle accurate simulator and those
running on actual picoArray hardware. picoICE
can be used to debug systems via a JTAG
interfaces.

The debugger provides all of the normal features
that would be expected. The source of either C or
assembler can be viewed and stepped though for
each process, and its variables, memory and
registers viewed.

Additionally as a parallel debugger many
processes can be debugged simultaneously. As
one process is stepped all of the others progress,
when one process hits a breakpoint all of the
others also halt - even over multiple devices.

To reinforce the system centric view of the tool
suite designs can be viewed in the Design
Browser. This can hierarchically display the tasks
and their interconnect. When used in the
debugger it can additionally display the state of
each process to show if it is running or stalled.

Figure 5 shows the Design Browser GUI

Figure 5 Design Browser GUI

Products

PC5100 License for picoTools, per seat
PC5200 License for picoTools, per site
PC5100-temp License for picoTools, 30 day evaluation
PC5300 picoICE JTAG debugger

For more information contact:

info@picochip.com or visit www.picochip.com

