
Proprietary & Confidential

© picoChip Designs Ltd 2008

Page 1 of 14

An Implementation of the LTE PCCC Encoder for the PicoArray

Doc ID: CTO-TN-0008

Date: 21-01-2007

Version: v2.00

Status: Preliminary

Type: CTO Office Technical Note

Author: Hao Wang

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 2 of 14

 picoChip (Beijing) Technology Co. Ltd.

Room 108, Bldg 10,

ZGC Software Park, Haidian District,

Beijing, 100094

P.R. China

 www.picochip.com

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 3 of 14

Table of Contents

Table of Contents ...3

Version History ...3

1 Introduction to picoArray...4

2 Introduction to Turbo encoder...7

3 Design of Turbo encoder on PicoArray...9

4 Resources...12

5 Implementation on PicoArray ..13

6 References ..13

7 Glossary..14

Version History

Version Date Author(s) Reason for Change

V1.00 12-Dec-2007 Hao Wang 1st draft

V1.10 12-Dec-2007 Hao Wang refined figure 2.

V1.20 13-Dec-2007 Hao Wang refined figure 3

V1.30 14-Dec-2007 Hao Wang added a flow chart (Fig. 4)

V1.40 14-Dec-2007 Hao Wang added result verification

using matlab in section 3.

V 1.50 18-Dec-2007 Hao Wang PN Fifo now has 3 output

V 1.60 20-Dec-2007 Hao Wang Added title& doc ID on the

front page

V 1.70 04-Jan-2008 Hao Wang Modifications based on the

review comments by CS

V 1.80 09-Jan-2008 Hao Wang Modifications based on the

review comments by SJ

V 1.90 15-Jan-2008 Sam Jenkins, Hao

Wang

Editorial modifications.

V 2.00 21-Jan-2008 Hao Wang Editorial modifications.

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 4 of 14

1 Introduction to picoArray

The picoArray is a multi-processor IC which integrates hundreds of processing elements into a single array.

The individual elements have been optimized for signal processing and wireless algorithm computation and

control. The result is a general purpose wireless communications processor, capable of executing all

contemporary wireless standards, which combines the computational density of a dedicated ASIC with the

programmability of a traditional high-end Digital Signal Processor (DSP). Details of picoArray can be found in

[3]. For the time being there are two main picoArray DSP products: PC102 and PC20x (PC202, PC203 and

PC205).

The PC102 contains four different types of array elements (AEs) which are detailed in Table 1, three of

which are programmable and the fourth is a configurable hardware accelerator unit. Minor differences exist

between the three programmable AE types (STAN2, MEM2 and CTRL2). These differences include the size

of instruction/data memory, additional processing units and instructions supported (e.g. multiply-accumulate,

multiply). Each AE can issue a long instruction word (LIW) of up to 64 bits into up to 3 execution units in a

single cycle (at 160 MHz). Each AE communicates with other AEs within the array over a bus which is

connected to by several ports.

In addition to the STAN2, MEM2 and CTRL2 AE types specified in Table 1, software for the PC102 can also

be targeted at the ANY2 AE type implying that: (1) the function does not use any AE-specific instructions and

(2) the code and data memory requirements can be met by all AE types.

Software, written in C or ASM, is targeted at an AE type depending on the processing units used and

memory required.

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 5 of 14

Table 1: PC102 processor variants and memory distribution.

Type Description Number Memory

(bytes)

STAN2 Standard.

A standard AE type includes multiply-accumulate peripheral

as well as special instructions optimized for CDMA spread

and de-spread. Memory is divided between 512 bytes code

and 256 bytes data.

240 768

MEM2 Memory

An AE having multiply unit and additional memory.

Memory division between code and data is configurable.

64 8,704

FAU Function Accelerator Unit

A co-processor optimized for specific signal processing

tasks (FEC, preamble detect, FHT, etc). Includes dedicated

hardware for trellis operations.

14 n/a

CTRL2 Control

An AE type with a multiply unit and larger amounts of data

and instruction memory optimized for the implementation of

base station control functionality.

Memory division between code and data is configurable.

4 65,536

Totals per PC102 device: 322 1,003,520

The picoBus is the name given to the switching fabric running vertically and horizontally between the

processing elements in the array. AEs are assigned 32-bit slots on the picoBus at compile time thereby

removing the need for arbitration and making performance completely deterministic. Each AE communicates

over the picoBus via its ports. These are defined using picoVHDL. Each AE has a number of ports which can

be configured to be read (incoming) or write (outgoing). Data sent between AEs is:

1. Written to a write port FIFO by the sending AE.

2. Sent over the picoBus on the next available slot.

3. Read from the read port FIFO by the receiving AE.

By default, communication between AEs is data blocking. On an attempt to read data from the picoBus, an

AE will block until data becomes available in the read port FIFO. Similarly, when attempting to write data to

the picoBus, the sending AE will block if its write port FIFO is full. A full write port FIFO infers that the

receiving AE’s read port is not taking data (i.e., is full itself).

Bandwidth on the picoBus between communicating AEs is assigned via @-rates. A signal is assigned an @-

rate which is a positive integer power of 2, e.g., @8, @16. The @-rate is defined in the port declarations in

both the sending and receiving AEs. This @-rate is relative to the system clock (160 MHz for the PC102 and

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 6 of 14

PC20x) and indicates how often data may be sent. For example, @8 means that a 32-bit data value can be

sent every 8 cycles (of the 160 MHz bus). The receiving AEs must therefore issue a read (against the

associated port) once every 8 cycles in order to prevent the sending AE from blocking.

PC20x and PC102 are similar except that they have different number of AEs and different accelerators. In

Table 2 we give a brief overview of PC202, PC203 and PC205.

Table 2: Brief overview of PC202, PC203 and PC205

AE Type Number

of AEs

Memory

(bytes)

FAU

STAN 196 768

MEM 50 8,704

CTRL 2 65,536

PC20x

Total* 248 716,800

FFT/IFFT

Viterbi

Turbo decoder,

Reed-Solomon decoder,

Cryptography accelerator

PC202 & PC205 only: ARM9 host & peripherals

* FAU AEs not included

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 7 of 14

2 Introduction to Turbo encoder

In this document we demonstrate a design and implementation of the turbo encoder supporting a throughput

of 100 Mbps. The structure of rate 1/3 turbo encoder [1] is shown in Figure 1.

Figure 1. Structure of LTE PCCC Turbo Encoder (dotted lines apply for trellis termination only)

kc

kc′

kx′

kx

kz

kz′

The bits input to the turbo encoder are denoted by ,,....,, 1210 −Kcccc and the bits output from the first and

second constituent encoders are denoted by 1210 ,....,, −Kzzzz and '
1

'
2

'
1

'
0 ,....,, −Kzzzz respectively. The bits

output from the turbo internal interleaver are denoted by '
1

'
2

'
1

'
0 ,....,, −Kcccc , and these bits are to be the input

to the second constituent encoder. Here where K is the block size, taking values from 40 to 6144, according

to [1].

The 3 outputs of the turbo encoder 0d ， 1d ， 2d are:

,0
kk xd = ,1

kk zd = ,'2
kk zd = 1,...1,0 −= Kk (1)

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 8 of 14

The trellis termination bits shall be:

,0
KK xd = ,1

0
1 ++ = KK zd ,'0

2 KK xd =+ ,' 1
0

3 ++ = KK zd

,1
KK zd = ,2

1
1 ++ = KK xd ,'1

2 KK zd =+ ,' 2
1

3 ++ = KK xd

,1
2

+= KK xd ,2
2

1 ++ = KK zd ,' 1
2

2 ++ = KK xd ,' 2
2

3 ++ = KK zd (2)

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 9 of 14

3 Design of Turbo encoder on PicoArray

The general block diagram of the Turbo encoder is given in Figure 2. The entity “CtrlK” and “PN9Gen” are

part of the test bench and those blocks in the dotted square form the structure of the turbo encoder. We give

a description of the different entities and modules of in Table 3.

Table 3: Description of the entities in Turbo Encoder

Entity Description Type

CtrlK Read block sizes (K’s) from file Kseq.dat and feed the Turbo encoder with a

stream of K’s. This is an entity for test bench.

STAN

PN9Gen Generate pseudo random source bits and feed them to the Turbo encoder.

This is an entity for test bench

STAN

KFifo1 Provide 3 identical but independent K sequences to different modules of the

turbo encoder. This is to prevent the program from blocking since the 1st

encoder, 2nd encoder, interleaver and CTCMUX run at different speeds.

MEM

KFifo2 Same as KFifo1 MEM

ProcPN Make the input bits block to be of size 32x. For example, if K=40, ProcPN

will put out 64 bits with the last 24 bits filled with 0’s.

STAN

PNFifo Provide 3 identical but independent input bit sequences to different modules

of the turbo encoder. The purpose of doing so is the same as KFifo1 /

KFifo2

MEM

1st encoder 1st constituent encoder (Figure 1) which comprises of 6 STANs to support

100 Mbps throughput. Please refer to Figure 3 for details.

group

2nd encoder 2nd constituent encoder (Figure 1) which comprises of 6 STANs to support

100 Mbps throughput. Please refer to Figure 3 for details.

group

interleaver Turbo internal interleaver. This is not discussed in this document. Please

refer to [2] for details.

group

CTC MUX Get 3 bit stream: xk, zk, z’k and output 3 bit stream d0, d1 and d2. The input-

output relationship is given in equation (1) and (2) in section 2. Note that the

input bit streams are of size K while the output having size (K+4) because

there are 4 trellis termination bits appended.

MEM

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 10 of 14

Figure 2: Block Diagram of the Turbo Encoder

Figure 3 is the block diagram of the 1st constituent encoder. We denote by 31210 ,....,, cccc the 32 input bits

and 31210 ,....,, zzzz the output bits. We denote the state of the three linear feedback shift registers (LFSRs)

by D, i.e., D = [D2 D1 D0]. The 2nd constituent encoder is identical to the 1st encoder in structure except that

the input bit stream is the output of the interleaver and the output bits are denoted by '
31

'
2

'
1

'
0 ,....,, zzzz .

Figure 3: Block Diagram of the 1st /2nd Encoder

The idea of the structure in Figure 3 is to split the computation of the 32 output bits to 4 individual AEs

(EncA0, EncA1, EncA2 and EncA3), each dedicated to its own 8 bit portion. EncA0 generates the first 8

output bits, EncA1 generates the second 8 output bits, and so on. From Figure 1 we see that the input bits

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 11 of 14

and the initial LFSR state are the information needed for generating the corresponding output bits. The last 3

individual encoders can get the D state from its previous encoders and EncA0 gets D from entity “DCalA”.

Assuming 31210 ,....,, cccc are the 32 input bits, the computation of the 3 LFSRs by DCalA is as follows:

02013678101314151720212224272829312 ^^^^^^^^^^^^^^^^^^^^ DDcccccccccccccccccccD =

0120256791213141619202123262728301 ^^^^^^^^^^^^^^^^^^^^ DDDccccccccccccccccccD =

12145681112131518192022252627291 ^^^^^^^^^^^^^^^^^^ DDcccccccccccccccccD =

where 210 ,, DDD on the right hand side are the current states and those on the left hand side are the new

states after absorbing 31210 ,....,, cccc .

The flow chart of EncA1 (working on bit 8~15) is given in Figure 4 as an example. The other 3 individual

encoders follow more or less the same procedure. The 4 individual encoders form a pipeline working in

parallel on different 8 bit portions of a 32 bit trunk. In Table 4 we give an example of the working scenario for

a 20 byte (160 bit) block. At iteration 5, the four individual encoders are computing byte 17, 14, 11, 8

simultaneously. Once done, the combiner will collect byte 5, 6, 7, 8 and output 32 bits.

Table 4: Timeline of the 4 Individual Encoders for a 160 bit (20 byte) block

iteration # EncA0 EncA1 EncA2 EncA3 combiner

1 1 prev prev prev prev

2 5 2 prev prev prev

3 9 6 3 prev prev

4 13 10 7 4 1,2,3,4

5 17 14 11 8 5,6,7,8

6 next 18 15 12 9,10,11,12

7 next next 19 16 13,14,15,16

8 next next next 20 17,18,19,20

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 12 of 14

Figure 4: Flow Chart of the 2nd Individual Encoder

4 Resources

Resources: 4 MEMs + 12 STANs + Interleaver resources for 100 Mbps

In Table 5 we give the number of AEs required vs. the throughput. If the throughput reduced to 50 Mbps, we

can use 2 individual encoders instead of 4, as in Figure 3. Therefore we can save 4 STANS. If the

throughput requirement further reduces to 25 Mbps, we can simply use 1 AE to implement the 1st or 2nd

encoder. In other words, the 6 AEs in Figure 3 can be replaced by 1 AE only since the throughput

requirement is not to onerous. Note that the resources for Turbo internal interleaver [2] are not included in

Table 5. The total resources should add the resources demonstrated in [2].

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 13 of 14

Table 5: Resources Needed For Turbo Encoder (Interleaver excluded)

 BW 25 Mbps 50 Mbps 75 Mbps 100 Mbps

of MEMs 4 4 4 4

of STANs 3 8 12 12

5 Implementation on PicoArray

Source Code: TurboEncoder.zip

Input file: Kseq.dat

Output file: d0_pico.dat, d1_pico.dat, d2_pico.dat

How to test:

(1) modify the block sizes in “Kseq.dat” to arbitrary valid K’s and append a few “0”s to the end. The

actual block size sequence will be the K’s repetitively. For example, if the content in “Kseq.dat” is

64, 256, 128, 0, 0, the K sequence in simulation will be 64, 256, 128, 64, 256, 128, 64….

 (2) make and run “./tstTurboEnc –s ./TCL/speed.tcl” and “./OutputFiles/matlab/verify.m”

(3) compare ”./OutputFiles/dx_pico.dat” with “./OutputFiles/dx_mat.dat” for verification.

(4)The throughput data is in ./OutputFiles/Throughput.dat

Throughput: 103 Mbps ~ 131 Mbps except for K = 40, 48, 56 and 72. (Blocks with size 40, 48 and 56

use the same amount of processing time as K=64, and the resulting throughput is about

5/8, 6/8 and 7/8 of the throughput of K=64. Similarly for K=72 the throughput will be 72/96

of that of K=96. The throughput of these block sizes are around 70Mbps ~ 95 Mbps).

Latency: around 45 μs

6 References

1. 3GPP TS 36.212 V8.1.0, December 2007

2. An Implementation of LTE PCCC Internal Interleaver for picoArray (CTO-TN-0007).

3. picoTools Documentation, V7.2.4, August 16, 2007.

An Implementation of the LTE PCCC Encoder for the PicoArray

picoChip Designs Ltd Proprietary & Confidential Page 14 of 14

7 Glossary

picoArray™ picoChip Designs Limited proprietary array processing architecture

PCCC Parallel Concatenated Convolutional Codes

LFSR Linear Feedback Shift Register

FIFO First-in-first-out

