ANALOG DEVICES

ADI Confidential

FEATURES

RF transceiver with integrated 12-bit DACs and ADCs

Band: 200 MHz to 2.3 GHz

Supports TDD and FDD operation

Tunable channel BW: <200 kHz to 10 MHz

3 band receiver: 3 differential or 6 single-ended inputs

Superior receiver sensitivity with a noise figure < 2.5 dB RX gain control

Real-time monitor and control signals for manual gain Independent automatic gain control (AGC)

2 band differential output transmitter

Highly linear broadband transmitter

TX EVM: ≤–34 dB

TX noise: ≤–157 dBm/Hz noise floor

TX monitor: ≥66 dB dynamic range with 1 dB accuracy

Integrated fractional-N synthesizers

2.5 Hz maximum local oscillator (LO) step size No TX or RX SAW filters required CMOS digital interface

APPLICATIONS

3G femtocell base stations Smart grid power meter transceivers

GENERAL DESCRIPTION

The AD9365 is a high performance, highly integrated RF Agile Transceiver[™] designed for use in 3G base station applications. Its programmability and wideband capability make it ideal for a broad range of transceiver applications. The device combines an RF front end with a flexible mixed-signal baseband section and integrated frequency synthesizers, simplifying design-in by providing a configurable digital interface to a processor. The AD9365 operates in the 200 MHz to 2.3 GHz range, covering most licensed and unlicensed bands. Channel bandwidths from <200 kHz to 10 MHz are supported.

RF Agile Transceiver

AD9365

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

10492-001

The transmitter uses a direct conversion architecture that achieves high modulation accuracy with ultralow noise. This transmitter design produces a best-in-class TX EVM of <-34 dB, allowing significant system margin for the external power amplifier (PA)

The direct conversion receiver has state-of-the-art noise figure and linearity. The receive (RX) subsystem includes independent automatic gain control (AGC), dc offset correction, quadrature correction, and digital filtering, thereby eliminating the need for these functions in the digital baseband. The AD9365 also has flexible manual gain modes that can be externally controlled. Two high dynamic range ADCs digitize the received I and Q signals and pass them through configurable decimation filters and 128-tap FIR filters to produce a 12-bit output signal at the appropriate sample rate.

selection. The on-board transmit (TX) power monitor can be used as a power detector, enabling highly accurate TX power measurements.

The fully integrated phase-locked loops (PLLs) provide low power fractional-N frequency synthesis for all receive and transmit channels. All VCO and loop filter components are integrated.

The core of the AD9365 can be powered directly from a 1.3 V regulator. The IC is controlled via a standard 4-wire serial port and three real-time I/O control pins. Comprehensive power-down modes are included to minimize power consumption in normal use. The AD9365 is packaged in a 10 mm × 10 mm, 144-ball chip scale package ball grid array (CSP_BGA).

Rev. Sp0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram1
General Description
Revision History
Specifications
Current Consumption Specifications7
Absolute Maximum Ratings8
Reflow Profile
Thermal Resistance8
ESD Caution
Pin Configuration and Function Descriptions9
Typical Performance Characteristics
800 MHz Frequency Band12
2.3 GHz Frequency Band16

Theory of Operation19General19Receiver19Transmitter19Clock Input Options19Synthesizers19Digital Data Interface20Enable State Machine20SPI Interface21Control Pins21GPO Pins (GPO_3 to GPO_0)21Auxiliary Converters21Outline Dimensions22Ordering Guide22

REVISION HISTORY

1/12—Revision Sp0: Initial Version

Rev. Sp0 | Page 2 of 24

SPECIFICATIONS

VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, all other VDDx pins = 1.3 V, $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 1.

						Test Conditions/
Parameter	Symbol	Min	Тур	Max	Unit	Comments
RECEIVERS, GENERAL						
Center Frequency		200		2300	MHz	
Gain						
Minimum			0		dB	
Maximum			74.5		dB	At 800 MHz
			73.0		dB	At 2300 MHz, RX1A
			72.0		dB	At 2300 MHz, RX1B, RX1C
Gain Step			1		dB	
Received Signal Strength Indicator	RSSI					
Range			100		dB	
Accuracy			±2		dB	
RECEIVERS, 800 MHz						
Noise Figure	NF		2		dB	Maximum RX gain
Third-Order Input Intermod- ulation Intercept Point	IIP3		-18		dBm	Maximum RX gain
Second-Order Input Intermod- ulation Intercept Point	IIP2		40		dBm	Maximum RX gain
Local Oscillator (LO) Leakage			-122		dBm	At RX front-end input
Quadrature Gain Error			0.2		%	
Quadrature Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-34		dB	19.2 MHz reference clock
Input S11			-10		dB	
RECEIVERS, 2.3 GHz						
Noise Figure	NF		3		dB	Maximum RX gain
Third-Order Input Intermod- ulation Intercept Point	IIP3		-14		dBm	Maximum RX gain
Second-Order Input Intermod-	IIP2		45		dBm	Maximum RX gain
Local Oscillator (LO) Leakage			-110		dBm	At RX front-end input
Ouadrature Gain Error			0.2		%	
Quadrature Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-34		dB	40 MHz reference clock
Input S11			-10		dB	
TRANSMITTERS, GENERAL						
Center Frequency		650		2300	MHz	
Power Control Range			90		dB	
Power Control Resolution			0.25		dB	
TRANSMITTERS, 800 MHz						
Output S22			-10		dB	
Maximum Output Power			8		dBm	1 MHz tone into 50 Ω load
Modulation Accuracy (EVM)			-34		dB	19.2 MHz reference clock
Third-Order Output Intermod- ulation Intercept Point	OIP3		23		dBm	
Carrier Leakage			-50		dBc	0 dB attenuation
-			-32		dBc	40 dB attenuation
Noise Floor			-157		dBm/Hz	90 MHz offset

ADI Confidential

					Test Conditions/
Parameter	Symbol	Min Typ	Max	Unit	Comments
TRANSMITTERS, 2.3 GHz					
Output S22		-10		dB	
Maximum Output Power		7.5		dBm	1 MHz tone into 50 Ω load
Modulation Accuracy (EVM)		-34		dB	40 MHz reference clock
Third-Order Output Intermod-	OIP3	19		dBm	
ulation Intercept Point					
Carrier Leakage		-50		dBc	0 dB attenuation
		-32		dBc	40 dB attenuation
Noise Floor		-156		dBm/Hz	90 MHz offset
TX MONITOR INPUT (TX_MON)				15	
Maximum Input Level		4		dBm	
Dynamic Range		66		dR dR	
Accuracy		1		ав	
LO SYNTHESIZER		10			
LO Frequency Step		1.2		HZ	2.3 GHZ, 40 MHZ reference
Integrated Phase Noise					100 Hz to 100 MHz
800 MHz		0.36		°rms	30.72 MHz reference clock
000 Mil 12		0.50		11113	(doubled internally for RF
					synthesizer)
2.3 GHz		0.37		° rms	40 MHz reference clock
REFERENCE CLOCK (REF_CLK)					REF_CLK is the input to the
					XTALN pin
Input Frequency Range		10	80	MHz	External oscillator
Input Signal Level		1.3		V p-р	AC-coupled external
					oscillator
		10		Dite	
Resolution		12		BITS	
Input voltage		0.05		V	
Maximum					
		VDDATP	'S_D - 0.05	V	
AUXILIARY DAC		10		Dite	
Resolution Output Voltage		10		DILS	
Minimum		0.5		V	
Maximum			20 - 0.3	v	
		10	0 - 0.5	mA	
		10			
Logic Inputs					
Input Voltage High		VDD INTERFACE $\times 0.8$	VDD INTERFACE	v	
Input Voltage Low				v	
input voltage Low		0	× 0.2		
Input Current High		-10	+10	μA	
Input Current Low		-10	+10	μΑ	
Logic Outputs					
Output Voltage High		VDD_INTERFACE × 0.8		v	
Output Voltage Low			VDD_INTERFACE	v	
			×0.2		
GENERAL-PURPOSE OUTPUTS					
Output Voltage High		$VDD_GPO \times 0.8$		V	
Output Voltage Low			$VDD_GPO \times 0.2$	V	
Output Current		10		mA	

AD9365

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/ Comments
SPITIMING						VDD_INTERFACE = 1.8 V
SPI_CLK						
Period	t _{ce}	20			ns	
Pulse Width	t _{MD}	9			ns	
SPI ENB Setup to First SPI CLK	tre	1			ns	
Rising Edge	*SC					
Last SPI_CLK Falling Edge	t _{HC}	0			ns	
to SPI_ENB Hold	inc.					
SPI_DI						
Data Input Setup to SPI_CLK	ts	2			ns	
Data Input Hold to SPI_CLK	t _H	1			ns	
SPI_CLK Rising Edge to Output						
Data Delay						
4-Wire Mode	t _{co}	3		8	ns	
3-Wire Mode	t _{co}	3		8	ns	
Bus Turnaround Time, Read	t _{HZM}	t _H		t _{co} (max)	ns	After BBP drives the last
						address bit
	t _{HZS}	0		t _{co} (max)	ns	After AD9365 drives the
						last data bit
DIGITAL DATA TIMING (CMOS),						
VDD_INTERFACE = 1.8 V						
DATA_CLK Clock Period	t _{CP}	16.276			ns	61.44 MHz
DATA_CLK and FB_CLK Pulse	t _{MP}	45% of t _{cP}		55% of t _{CP}	ns	
Width						TV FRAME DO D and D1 D
TX Data						TX_FRAME, P0_D, and P1_D
Setup to FB_CLK	t _{stx}	1			ns	
Hold to FB_CLK	t _{HTX}	0			ns	
DATA_CLK to Data Bus Output	t _{DDRX}	0		1.5	ns	
Delay				1.0		
DATA_CLK to RX_FRAME Delay	t _{DDDV}	0		1.0	ns	
ENABLE Pulse Width	τ _{enpw}	t _{CP}			ns	FDD in day on days FNCM
TXNRX Pulse Width	τ _{TXNRXPW}	t _{CP}			ns	FDD independent ENSM
TYNRY Setup to ENARI E	•				nc	TDD ENSM mode
Rus Turparound Timo	TXNRXSU	0				TDD ENSMITHOUE
Bus rumaround rime		2.4				TDD mode
After DV	L _{RPRE}				ns	
After KX	ι _{rpst}	$2 \times t_{CP}$	2		ns m	
Capacitive Load			3		pF	
			3		рг	
DIGITAL DATA TIMING (CMOS), VDD_INTEREACE = 2.5 V						
DATA CLK Clock Period	+	16 276			nc	61 // MHz
DATA_CLK clock Feriod	•ср +	45% of t		55% of t	ns	01.44 Mill2
Width	MP	43% OI L _{CP}		55% OF CCP		
TX Data						TX_FRAME, P0_D, and P1_D
Setup to FB_CLK	t	1			ns	
Hold to FB_CLK	•STX	0			ns	
DATA CLK to Data Bus Output	•HTX t	0		12	ns	
Delay	*DDRX	Ů		1.2		
DATA CLK to RX FRAME Delay	toppy	0		1.0	ns	
ENABLE Pulse Width	tennu	tcp			ns	
TXNRX Pulse Width	tryppyow	to			ns	FDD independent ENSM
	~TXNKXPW	-07				mode
TXNRX Setup to ENABLE	t _{TXNRXSU}	0			ns	TDD ENSM mode

ADI Confidential

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/ Comments
Bus Turnaround Time						TDD mode
Before RX	t _{RPRE}	$2 \times t_{CP}$			ns	
After RX	t _{RPST}	$2 \times t_{CP}$			ns	
Capacitive Load			3		pF	
Capacitive Input			3		pF	
SUPPLY CHARACTERISTICS						
1.3 V Main Supply		1.267	1.3	1.33	V	
VDD_INTERFACE Supply		1.2		2.5	V	
VDD_GPO Supply		1.3	3.3		V	When unused, must be set to 1.3 V

Rev. Sp0 | Page 6 of 24

CURRENT CONSUMPTION SPECIFICATIONS

Table 2.

Parameter	Min Typ	Max Un	nit	Test Conditions/Comment
VDD_GPO	50	μΑ	۹ ا	No load
VDD_INTERFACE				
VDD_INTERFACE = 1.2 V				
Sleep Mode	45	μA	۹	Power applied, device disabled
10 MHz BW, Single Port, DDR	2.9	m/	A	30.72 MHz data clock
10 MHz BW, Dual Port, DDR	2.7	m/	A	15.36 MHz data clock
VDD_INTERFACE = 1.8 V				
Sleep Mode	84	μA	۸	Power applied, device disabled
10 MHz BW, Single Port, DDR	4.5	m/	A	30.72 MHz data clock
10 MHz BW, Dual Port, DDR	4.1	m/	A	15.36 MHz data clock
VDD_INTERFACE = 2.5 V				
Sleep Mode	150	μA	۸	Power applied, device disabled
10 MHz BW, Single Port, DDR	6.5	m/	A	30.72 MHz data clock
10 MHz BW, Dual Port, DDR	6.0	mA	A	15.36 MHz data clock
VDDD1P3 DIG AND VDDAx				Combination of all 1.3 V supply
(ALL OTHER SUPPLIES)				current
Sleep Mode	180	μA	4	Power applied, device disabled
TDD Mode, 800 MHz, RX				
5 MHz BW	180	m/	A	Continuous RX
10 MHz BW	210	m/	A	Continuous RX
TDD Mode, 800 MHz, TX				
5 MHz BW				
7 dBm	340	m/	A	Continuous TX
–27 dBm	190	m/	A	Continuous TX
10 MHz BW				
7 dBm	360	m/	A	Continuous TX
–27 dBm	220	m/	A	Continuous TX
TDD Mode, 2300 MHz, RX				
5 MHz BW	175	m/	A	Continuous RX
10 MHz BW	200	m/	A	Continuous RX
TDD Mode, 2300 MHz, TX				
5 MHz BW				
7 dBm	350	m/	A	Continuous TX
–27 dBm	160	mA	A	Continuous TX
10 MHz BW				
7 dBm	380	m/	A	Continuous TX
–27 dBm	220	m/	A	Continuous TX
FDD Mode, 800 MHz				
5 MHz BW				
7 dBm	490	mA	A	
–27 dBm	345	mA	A	
10 MHz BW				
7 dBm	540	mA	A	
–27 dBm	395	mA	A	
FDD Mode, 2300 MHz				
5 MHz BW				
7 dBm	500	m	A	
–27 dBm	350	m/	A	
10 MHz BW				
7 dBm	540	m/	A	
–27 dBm	390	m	A	

Rev. Sp0 | Page 7 of 24

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
VDDx to VSSx	-0.3 V to +1.4 V
VDD_INTERFACE to VSSx	–0.3 V to +3.0 V
VDD_GPO to VSSx	–0.3 V to +3.9 V
Logic Inputs and Outputs to VSSx	-0.3 V to VDD_INTERFACE
Input Current to Any Pin Except Supplies	±10 mA
RF Inputs (Peak Power)	2.5 dBm
TX Monitor Input Power (Peak Power)	9 dBm
Package Power Dissipation	$(T_{JMAX} - T_A)/\theta_{JA}$
Maximum Junction Temperature (T _{JMAX})	110°C
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

REFLOW PROFILE

The AD9365 reflow profile is in accordance with the JEDEC JESD20 criteria for Pb-free devices. The maximum reflow temperature is 260°C.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	Airflow Velocity (m/sec)	θ _{JA} ^{1, 2}	θ _{JC} ^{1, 3}	θ _{JB} ^{1,4}	Ψ _, 1,2	Unit
144-Ball	0	32.3	9.6	20.2	0.27	°C/W
CSP_BGA	1.0	29.6			0.43	°C/W
	2.5	27.8			0.57	°C/W

¹ Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board. ² Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).

³ Per MIL-STD 883, Method 1012.1.

⁴ Per JEDEC JESD51-8 (still air).

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Rev. Sp0 | Page 8 of 24

10492-002

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	1	2	3	4	5	6	7	8	9	10	11	12
A	VSSA	VSSA	NC	VSSA	TX_MON	VSSA	VDDA1P3_ RX_TX	VDDA1P3_ RX_TX	VDDA1P3_ RX_TX	VDDA1P3_ RX_TX	VDDA1P1_ TX_VCO	VSSA
в	VSSA	VSSA	AUXDAC1	GPO_3	GPO_2	GPO_1	GPO_0	VDD_GPO	VDDA1P3_ TX_LO	VDDA1P3_ TX_VCO_ LDO	TX_VCO_ LDO_OUT	VSSA
с	VSSA	VSSA	AUXDAC2	TEST/ ENABLE	CTRL_IN0	CTRL_IN1	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
D	VSSA	VDDA1P3_ RX_RF	VDDA1P3_ RX_TX	NC	VSSA	CTRL_IN2	P0_D9	P0_D7	P0_D5	P0_D3	P0_D1	VSSD
Е	VSSA	VDDA1P3_ RX_LO	VDDA1P3_ TX_LO_ BUFFER	NC	NC	NC	P0_D11	P0_D8	P0_D6	P0_D4	P0_D2	P0_D0
F	VSSA	VDDA1P3_ RX_VCO_ LDO	VSSA	CTRL_OUT2	CTRL_OUT1	CTRL_OUTO	VSSD	P0_D10	VSSD	FB_CLK	VSSD	VDDD1P3_ DIG
G	VSSA	RX_VCO_ LDO_OUT	VDDA1P1_ RX_VCO	NC	EN_AGC	ENABLE	VSSA	RX_ FRAME	TX FRAME	VSSA	DATA_ CLK	VSSD
н	RX1B_P	VSSA	VSSA	TXNRX	SYNC_IN	VSSA	VSSD	P1_D11	VSSA	VSSD	VSSA	VDD_ INTERFACE
J	RX1B_N	VSSA	VDDA1P3_ RX_SYNTH	SPI_DI	SPI_CLK	CLK_OUT	P1_D10	P1_D9	P1_D7	P1_D5	P1_D3	P1_D1
к	RX1C_P	VSSA	VDDA1P3_ TX_SYNTH	VDDA1P3_ BB	RESETB	SPI_ENB	P1_D8	P1_D6	P1_D4	P1_D2	P1_D0	VSSD
L	RX1C_N	VSSA	VSSA	RBIAS	AUXADC	SPI_DO	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
м	RX1A_P	RX1A_N	NC	VSSA	VSSA	VSSA	TX1A_P	TX1A_N	TX1B_P	TX1B_N	NC	XTALN
	ANALOG I/O DC POWER DIGITAL I/O GROUND NO CONNECT											

Table 5.	. Pin Function	Descriptions
----------	----------------	--------------

Pin No.	Type ¹	Mnemonic	Description
A5	I	TX_MON	Transmit Channel Power Monitor Input. If this pin is unused, tie it to ground.
A7, A8, A9,	I.	VDDA1P3_RX_TX	1.3 V Supply Input.
A10, D3			
A11	1 I	VDDA1P1_TX_VCO	Transmit VCO Supply Input. Connect to B11.
B3	0	AUXDAC1	Auxiliary DAC 1 Output.
B4, B5, B6, B7	0	GPO_3 to GPO_0	3.3 V Capable General-Purpose Outputs.
B8	I	VDD_GPO	2.5 V to 3.3 V Supply Input for the AUXDAC and General-Purpose Output Pins. When the VDD_GPO supply is not used, this supply must be set to 1.3 V.
B9	I I	VDDA1P3_TX_LO	Transmit LO 1.3 V Supply Input.
B10	I.	VDDA1P3_TX_VCO_LDO	Transmit VCO LDO 1.3 V Supply Input. Connect to B9.
B11	0	TX_VCO_LDO_OUT	Transmit VCO LDO Output. Connect to A11 and to a 1 μ F bypass capacitor in series with
			a 1 Ω resistor to ground.
C3	0	AUXDAC2	Auxiliary DAC 2 Output.
C4	T	TEST/ENABLE	Test Input. Ground this pin for normal operation.
C5, C6, D6	1 I	CTRL_IN0 to CTRL_IN2	Control Inputs. Used for manual RX gain and TX attenuation control.
D2	1 I	VDDA1P3_RX_RF	Receiver 1.3 V Supply Input. Connect to D3.
D7	I/O	P0_D9	Digital Data Port P0_D9. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
D8	I/O	P0_D7	Digital Data Port P0_D7. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
D9	I/O	P0_D5	Digital Data Port P0_D5. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
D10	I/O	P0_D3	Digital Data Port P0_D3. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
D11	I/O	P0_D1	Digital Data Port P0_D1. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
E2	I I	VDDA1P3_RX_LO	Receive LO 1.3 V Supply Input.
E3	I.	VDDA1P3_TX_LO_BUFFER	1.3 V Supply Input.
E7	I/O	P0_D11	Digital Data Port P0_D11. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
E8	I/O	P0_D8	Digital Data Port P0_D8. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.

Pin No.	Type ¹	Mnemonic	Description
E9	I/O	P0_D6	Digital Data Port P0_D6. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
E10	I/O	P0_D4	Digital Data Port P0_D4. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
E11	I/O	P0_D2	Digital Data Port P0_D2. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
E12	I/O	P0_D0	Digital Data Port P0_D0. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
F2	1	VDDA1P3 RX VCO LDO	Receive VCO LDO 1.3 V Supply Input. Connect to E2.
F4, F5, F6	0	CTRL_OUT2 to CTRL_OUT0	Control Outputs. These pins are multipurpose outputs that have programmable functionality.
F8	I/O	P0_D10	Digital Data Port P0_D10. Part of the 12-bit bidirectional parallel CMOS level Data Port 0.
F10	1	FB_CLK	Feedback Clock. This pin receives the FB_CLK signal that clocks in TX data.
F12	1	VDDD1P3_DIG	1.3 V Digital Supply Input.
G2	0	RX_VCO_LDO_OUT	Receive VCO LDO Output. Connect to G3 and to a 1 μF bypass capacitor in series with a 1 Ω resistor to ground.
G3	1	VDDA1P1_RX_VCO	Receive VCO Supply Input. Connect to G2.
G5	1	EN_AGC	Manual Control Input for Automatic Gain Control (AGC).
G6	I	ENABLE	Control Input. This pin moves the device through various operational states.
G8	0	RX_FRAME	Receive Digital Data Framing Output Signal. This pin transmits the RX_FRAME signal that indicates when the RX output data is valid.
G9	I	TX_FRAME	Transmit Digital Data Framing Input Signal. This pin receives the TX_FRAME signal that indicates when the TX data is valid.
G11	0	DATA_CLK	Receive Data Clock Output. This pin transmits the DATA_CLK signal that is used by the BBP to clock RX data.
H1, J1	I	RX1B_P, RX1B_N	Receive Channel 1 Differential Input B. Alternatively, each pin can be used as a single- ended input. Unused pins must be tied to ground.
H4	I	TXNRX	Enable State Machine Control Signal. This pin controls the data port bus direction. Logic low selects the RX direction; logic high selects the TX direction.
H5	1	SYNC_IN	Input to Synchronize Digital Clocks Between Multiple AD9365 Devices. If this pin is unused, leave it unconnected.
H8	I/O	P1_D11	Digital Data Port P1_D11. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
H12	T	VDD_INTERFACE	1.2 V to 2.5 V Supply Input for Digital I/O Pins.
J3	T	VDDA1P3_RX_SYNTH	1.3 V Supply Input.
J4	1	SPI_DI	SPI Serial Data Input.
J5	I	SPI_CLK	SPI Clock Input.
J6	0	CLK_OUT	Clock Output. This pin can be configured as either a buffered version of the external input clock or a divided-down version of the internal ADC_CLK.
J7	I/O	P1_D10	Digital Data Port P1_D10. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
J8	I/O	P1_D9	Digital Data Port P1_D9. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
19	I/O	P1_D7	Digital Data Port P1_D7. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
J10	I/O	P1_D5	Digital Data Port P1_D5. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
J11	I/O	P1_D3	Digital Data Port P1_D3. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
J12	I/O	P1_D1	Digital Data Port P1_D1. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
K1, L1	I	RX1C_P, RX1C_N	Receive Channel 1 Differential Input C. Alternatively, each pin can be used as a single- ended input. Unused pins must be tied to ground.
K3	1	VDDA1P3_TX_SYNTH	1.3 V Supply Input.
K4	1	VDDA1P3_BB	1.3 V Supply Input.
K5	1	RESETB	Asynchronous Reset Input. Logic low resets the device.
K6	1	SPI_ENB	SPI Enable Input. Set this pin to logic low to enable the SPI bus.
K7	I/O	P1_D8	Digital Data Port P1_D8. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
K8	I/O	P1_D6	Digital Data Port P1_D6. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
К9	I/O	P1_D4	Digital Data Port P1_D4. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
K10	I/O	P1_D2	Digital Data Port P1_D2. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
K11	I/O	P1_D0	Digital Data Port P1_D0. Part of the 12-bit bidirectional parallel CMOS level Data Port 1.
L4	I	RBIAS	Bias Input Reference. Connect this pin through a 14.3 k Ω (1% tolerance) resistor to ground.
L5	I	AUXADC	Auxiliary ADC Input. If this pin is unused, tie it to ground.
L6	0	SPI_DO	SPI Serial Data Output in 4-Wire Mode, High-Z in 3-Wire Mode.

Pin No.	Type ¹	Mnemonic	Description
M1, M2	1	RX1A_P, RX1A_N	Receive Channel 1 Differential Input A. Alternatively, each pin can be used as a single- ended input. Unused pins must be tied to ground.
M7, M8	0	TX1A_P, TX1A_N	Transmit Channel 1 Differential Output A. Unused pins must be tied to 1.3 V.
M9, M10	0	TX1B_P, TX1B_N	Transmit Channel 1 Differential Output B. Unused pins must be tied to 1.3 V.
M12	1	XTALN	External Clock Input. Connect the clock source to this pin.
D12, F7, F9, F11, G12, H7, H10, K12	1	VSSD	Digital Ground. Tie these pins directly to the VSSA analog ground on the PCB (one ground plane).
A1, A2, A4, A6, A12, B1, B2, B12, C1, C2, C7, C8, C9, C10, C11, C12, D1, D5, E1, F1, F3, G1, G7, G10, H2, H3, H6, H9, H11, J2, K2, L2, L3, L7, L8, L9, L10, L11, L12, M4, M5, M6		VSSA	Analog Ground. Tie these pins directly to the VSSD digital ground on the PCB (one ground plane).
A3, D4, E4, E5, E6, G4, M3, M11	NC	NC	No Connect. Do not connect to these pins.

¹ I is input, O is output, I/O is input/output, NC is not connected.

Rev. Sp0 | Page 11 of 24

TYPICAL PERFORMANCE CHARACTERISTICS **800 MHZ FREQUENCY BAND**

Figure 6. RX EVM vs. Interferer Power, LTE 10 MHz Signal of Interest with $P_{IN} = -82 \, dBm$, 5 MHz OFDM Blocker at 7.5 MHz Offset

80 - -40 ℃ - +25 ℃ - +85 ℃ 78 76 RX GAIN (dB) 74 72 70 68 66 -700 10492-011 900 750 800 850 **RX LO FREQUENCY (MHz)**

Figure 9. RX Gain vs. Frequency, Gain Index = 76 (Maximum Setting)

Figure 10. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index, f1 = 1.45 MHz, f2 = 2.89 MHz, GSM Mode

AD9365

Figure 11. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index, f1 = 2.00 MHz, f2 = 2.01 MHz, GSM Mode

Figure 14. TX Output Power vs. Frequency, Attenuation Setting = 0 dB, Single Tone Output

ADI Confidential

Figure 15. TX Power Control Linearity Error vs. Attenuation Setting

Figure 16. TX Spectrum vs. Frequency Offset from Carrier Frequency, $f_{LO_{TX}} = 800 \text{ MHz}$, LTE 10 MHz Downlink (Digital Attenuation

Figure 18. TX Spectrum vs. Frequency Offset from Carrier Frequency, $f_{LO_{TX}} = 800 \text{ MHz}$, GSM Downlink (Digital Attenuation Variations Shown), 12 MHz Range

Figure 19. Integrated TX LO Phase Noise vs. Frequency, 19.2 MHz REF_CLK

Variations Shown)

Figure 17. TX Spectrum vs. Frequency Offset from Carrier Frequency, $f_{LO_{TX}} = 800 \text{ MHz}$, GSM Downlink (Digital Attenuation Variations Shown), 3 MHz Range

Figure 20. TX Carrier Rejection vs. Frequency

Figure 21. TX Second-Order Harmonic Distortion (HD2) vs. Frequency

Figure 22. TX Third-Order Harmonic Distortion (HD3) vs. Frequency

Figure 24. TX Signal-to-Noise Ratio (SNR) vs. Attenuation Setting, LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset

Figure 25. TX Signal-to-Noise Ratio (SNR) vs. Attenuation Setting, GSM Signal of Interest with Noise Measured at 20 MHz Offset

AD9365

Figure 26. TX Single Sideband (SSB) Rejection vs. Frequency, 1.5375 MHz Offset

ADI Confidential

2.3 GHZ FREQUENCY BAND

Figure 27. RX Noise Figure vs. RF Frequency

Figure 30. Third-Order Input Intercept Point (IIP3) vs. RX Gain Index, f1 = 30 MHz, f2 = 61 MHz

Figure 28. RSSI Error vs. Input Power (Referenced to -50 dBm Input Power at 2.3 GHz)

RX GAIN INDEX

10492-

Figure 31. Second-Order Input Intercept Point (IIP2) vs. RX Gain Index, f1 = 60 MHz, f2 = 61 MHz

AD9365

Figure 33. TX Output Power vs. Frequency, Attenuation Setting = 0 dB, Single Tone Output

Figure 34. TX Power Control Linearity Error vs. Attenuation Setting

Figure 36. TX Carrier Rejection vs. Frequency

Figure 37. TX Second-Order Harmonic Distortion (HD2) vs. Frequency

Figure 35. Integrated TX LO Phase Noise vs. Frequency, 40 MHz REF_CLK

Figure 38. TX Third-Order Harmonic Distortion (HD3) vs. Frequency

ADI Confidential

vs. Attenuation Setting

Figure 41. TX Single Sideband (SSB) Rejection vs. Frequency, 3.075 MHz Offset

Figure 40. TX Signal-to-Noise Ratio (SNR) vs. Attenuation Setting, LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset

Rev. Sp0 | Page 18 of 24

THEORY OF OPERATION GENERAL

The AD9365 is a highly integrated radio frequency (RF) transceiver capable of being configured for a wide range of applications. The device integrates all RF, mixed-signal, and digital blocks necessary to provide all transceiver functions in a single device. Programmability allows this broadband transceiver to be adapted for use with multiple communication standards, including frequency division duplex (FDD) and time division duplex (TDD) systems. This programmability also allows the device to interface to various baseband processors (BBPs) using a single 12-bit parallel data port or dual 12-bit parallel data ports.

The AD9365 also provides self-calibration and automatic gain control (AGC) systems to maintain a high performance level under varying temperatures and input signal conditions. In addition, the device includes several test modes that allow system designers to insert test tones and create internal loopback modes to debug their designs during prototyping and optimize their radio configuration for a specific application.

RECEIVER

The receiver section contains all blocks necessary to receive RF signals and convert them to digital data that is usable by a BBP. It has three inputs that can be multiplexed to the signal chain, making the AD9365 suitable for use in multiband systems with multiple antenna inputs. The receiver is a direct conversion system that contains a low noise amplifier (LNA), followed by matched in-phase (I) and quadrature (Q) amplifiers, mixers, and band shaping filters that downconvert received signals to baseband for digitization. External LNAs can also be interfaced to the device, allowing designers the flexibility to customize the receiver front end for their specific application.

TRANSMITTER

The transmitter section consists of two differential output stages that can be multiplexed to the transmit channel. The transmit channel provides all digital processing, mixed-signal, and RF blocks necessary to implement a direct conversion system. The digital data received from the BBP passes through a fully programmable 128-tap FIR filter with interpolation options. The FIR output is sent to a series of interpolation filters that provide additional filtering and data rate interpolation prior to reaching the DAC. Each 12-bit DAC has an adjustable sampling rate. Both the I and Q channels are fed to the RF block for upconversion.

When converted to baseband analog signals, the I and Q signals are filtered to remove sampling artifacts and fed to the upconversion mixers. At this point, the I and Q signals are recombined and modulated on the carrier frequency for transmission to the output stage. The combined signal also passes through analog filters that provide additional band shaping; the signal is then transmitted to the output amplifier. The transmit channel provides a wide attenuation adjustment range with fine granularity to help designers optimize signal-to-noise ratio (SNR).

Self-calibration circuitry is built into the transmit channel to provide automatic real-time adjustment. The transmitter block also provides a TX monitor that routes the transmitter output back through an unused receiver channel to the BBP for signal monitoring. The TX monitor is available in both FDD mode and TDD mode.

CLOCK INPUT OPTIONS

The AD9365 uses an external oscillator or clock distribution device (such as the AD9548) to provide a reference clock to the XTALN pin. The clock frequency can vary between 10 MHz and 80 MHz. This reference clock is used to supply the synthesizer blocks that generate all data clocks, sample clocks, and local oscillators inside the device.

Gain control is achieved by following a preprogrammed gain index map that distributes gain among the blocks for optimal performance at each level. This can be achieved by enabling the internal AGC in either fast or slow mode or by using manual gain control, allowing the BBP to make the gain adjustments as needed. Additionally, the receiver provides independent RSSI measurement capability, dc offset tracking, and all circuitry necessary for self-calibration.

The receiver includes 12-bit, sigma-delta $(\Sigma - \Delta)$ ADCs and adjustable sample rates that produce data streams from the received signals. The digitized signals can be conditioned further by a series of decimation filters and a fully programmable 128-tap FIR filter with additional decimation settings. The sample rate of each digital filter block can also be adjusted by changing decimation factors to produce the desired output data rate.

SYNTHESIZERS

RF PLLs

The AD9365 contains two identical synthesizers to generate the required LO signals for the RF signal paths—one for the receiver and one for the transmitter. Phase-locked loop (PLL) synthesizers are fractional-N designs that incorporate completely integrated voltage controlled oscillators (VCOs) and loop filters. In TDD mode, the synthesizers turn on and off as appropriate for the RX and TX frames. In FDD mode, the TX PLL and the RX PLL can be activated at the same time. These PLLs require no external components.

BB PLL

The AD9365 also contains a baseband PLL (BB PLL) synthesizer that is used to generate all baseband related clock signals. These signals include the ADC and DAC sampling clocks, the DATA_CLK signal (see the Digital Data Interface section), and all data framing signals. The BB PLL is programmed from 700 MHz to 1400 MHz based on the data rate and sample rate requirements of the system.

DIGITAL DATA INTERFACE

The AD9365 data interface uses parallel data ports (P0 and P1) to transfer data between the device and the BBP. The data ports consist of single-ended, CMOS format, 12-bit buses. Each bus can be configured in multiple arrangements to match system requirements for data ordering and data port connections. These configurations include single port data bus, dual port data bus, single data rate, and double data rate.

Bus transfers are controlled using simple hardware handshake signaling. The two ports can be operated in either bidirectional (TDD) mode or in full duplex (FDD) mode, where half the bits are used for transmitting data and half are used for receiving data. The interface can also be configured to use only one of the data ports for applications that do not require high data rates and require fewer interface pins.

DATA_CLK Signal

The AD9365 supplies the DATA_CLK signal that the BBP uses when receiving the data. The DATA_CLK can be set to a rate that provides single data rate (SDR) timing, where data is sampled on each rising clock edge, or it can be set to provide double data rate (DDR) timing, where data is captured on both rising and falling clock edges. SDR or DDR timing applies to operation using either a single port or both ports.

FB_CLK Signal

ENABLE STATE MACHINE

The AD9365 transceiver includes an enable state machine (ENSM) that allows real-time control over the current state of the device. The device can be placed in several different states during normal operation, including

- Wait-power save, synthesizers disabled
- Sleep-wait with all clocks and the BB PLL disabled
- TX—TX signal chain enabled
- RX—RX signal chain enabled
- FDD—TX and RX signal chains enabled
- Alert—synthesizers enabled

The ENSM has two control modes: SPI control and pin control.

SPI Control Mode

In SPI control mode, the ENSM is controlled asynchronously by writing to SPI registers to advance the current state to the next state. SPI control is considered asynchronous to the DATA_CLK because the SPI_CLK can be derived from a different clock reference and can still function properly. The SPI control ENSM method is recommended when real-time control of the synthesizers is not necessary. SPI control can be used for real-time control as long as the BBP can perform timed SPI writes accurately.

Pin Control Mode

In pin control mode, the enable function of the ENABLE pin and the TXNRX pin allow real-time control of the current state. The ENSM allows TDD or FDD operation, depending on the configuration of the corresponding SPI register. The ENABLE and TXNRX pin control mode is recommended if the BBP has extra control outputs that can be controlled in real time, allowing a simple 2-wire interface to control the state of the device. To advance the current state of the ENSM to the next state, the enable function of the ENABLE pin can be driven by either a pulse (edge detected internally) or a level.

For transmit data, the interface uses the FB_CLK signal as the timing reference. FB_CLK allows source synchronous timing with rising edge capture for burst control signals and either rising edge capture (SDR mode) or both edge capture (DDR mode) for transmit signal bursts. The FB_CLK signal must have the same frequency and duty cycle as DATA_CLK.

RX_FRAME Signal

The device generates an RX_FRAME output signal whenever the receiver outputs valid data. This signal has two modes: level mode (RX_FRAME stays high as long as the data is valid) and pulse mode (RX_FRAME pulses with a 50% duty cycle). Similarly, the BBP must provide a TX_FRAME signal that indicates the beginning of a valid data transmission with a rising edge. Like RX_FRAME, this signal can stay high throughout the burst or it can be pulsed with a 50% duty cycle.

When a pulse is used, it must have a minimum pulse width of one FB_CLK cycle. In level mode, the ENABLE and TXNRX pins are also edge detected by the AD9365 and must meet the same minimum pulse width requirement of one FB_CLK cycle.

In FDD mode, the ENABLE and TXNRX pins can be remapped to serve as real-time RX and TX data transfer control signals. In this mode, the enable function of the ENABLE pin assumes the RXON function (controls when the RX path is enabled and disabled), and the TXNRX pin assumes the TXON function (controls when the TX path is enabled and disabled). In this mode, the ENSM must be controlled by SPI writes while the ENABLE and TXNRX pins control all data flow.

SPI INTERFACE

The AD9365 uses a serial peripheral interface (SPI) to communicate with the BBP. This interface can be configured as a 4-wire interface with dedicated receive and transmit ports, or it can be configured as a 3-wire interface with a bidirectional data communication port. This bus allows the BBP to set all device control parameters using a simple address data serial bus protocol.

Write commands follow a 24-bit format. The first six bits are used to set the bus direction and number of bytes to transfer. The next 10 bits set the address where data is to be written. The final eight bits are the data to be transferred to the specified register address (MSB to LSB). The AD9365 also supports an LSB-first format that allows the commands to be written in LSB to MSB format. In this mode, the register addresses are incremented for multibyte writes.

Read commands follow a similar format, with the exception that the first 16 bits are transferred on the SPI_DI pin and the final eight bits are read from the AD9365, either on the SPI_DO pin in 4-wire mode or on the SPI_DI pin in 3-wire mode.

CONTROL PINS Control Outputs (CTRL_OUT2 to CTRL_OUT0)

The AD9365 provides three simultaneous real-time output signals for use as interrupts to the BBP. These outputs can be configured to output a number of internal settings and measurements that the BBP can use when monitoring transceiver performance in different situations. The control output pointer register selects the information that is output to these pins, and the control output enable register determines which signals are activated for monitoring by the BBP. Signals used for manual gain mode, calibration flags, state machine states, and the ADC output are among the outputs that can be monitored on these pins.

Control Inputs (CTRL_IN2 to CTRL_IN0)

The AD9365 provides three edge detected control input pins. In manual gain mode, the BBP can use these pins to change the gain table index in real time. In transmit mode, the BBP can use two of the pins to change the transmit gain in real time.

GPO PINS (GPO_3 TO GPO_0)

The AD9365 provides four, 3.3 V capable general-purpose logic output pins: GPO_3, GPO_2, GPO_1, and GPO_0. These pins can be used to control other peripheral devices such as regulators and switches via the AD9365 SPI bus, or they can function as slaves for the internal AD9365 state machine.

AUXILIARY CONVERTERS AUXADC

The AD9365 contains an auxiliary ADC that can be used to monitor system functions such as temperature or power output. The converter is 12 bits wide and has an input range of 0 V to the VDDA1P3_BB supply voltage. When enabled, the ADC is free running. SPI reads provide the last value latched at the ADC output. A multiplexer in front of the ADC allows the user to select between the AUXADC input pin and a built-in temperature sensor.

AUXDAC1 and AUXDAC2

The AD9365 contains two identical auxiliary DACs that can provide power amplifier (PA) bias or other system functionality. The auxiliary DACs are 10 bits wide, have an output voltage range of 0.5 V to VDD_GPO – 0.3 V and a current drive of 10 mA, and can be directly controlled by the internal enable state machine.

Rev. Sp0 | Page 21 of 24

ADI Confidential

11-18-2011-A

OUTLINE DIMENSIONS

Figure 42. 144-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-144-7) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option

AD9365BBCZ	-40°C to +85°C	144-Ball CSP_BGA	BC-144-7
AD9365BBCZ-REEL	-40°C to +85°C	144-Ball CSP_BGA	BC-144-7
AD9365/PCBZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

NOTES

Rev. Sp0 | Page 23 of 24

NOTES

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10492-0-1/12(Sp0)

www.analog.com

Rev. Sp0 | Page 24 of 24