Introduction	Software Interface	Hardware: SAM4S $+$ LIU	Hardware: ice40	Final words

Open Hardware USB E1 interface (WIP)

Sylvain Munaut

OsmoCon, October, 2018

Sylvain Munaut Open Hardware USB E1 interface (WIP)

Introduction	Software Interface	Hardware: SAM4S $+$ LIU	Hardware: ice40	Final words

Introduction

Sylvain Munaut Open Hardware USB E1 interface (WIP)

< 口 > < 同

Image: A Image: A

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
●000000	00	00000	00000	00
E1/T1/TDM				

- Good old ISDN technology
- 2 Mbits/s (E1) or 1.54 Mbits/s (T1) synchronous, full-duplex
 - Focus on E1 here
- Not used much anymore in telephony (everything moves to SIP/IP)
- Still used quite a bit in 2G/3G cellular networks, even in 2018!

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0 000000		00000	00000	00
F1 in 2G/3G	networks today			

Traditionally all interfaces over E1/T1

- Abis (RSL/OML over LAPDm) from BTS to BSC
 - Back-haul networks increasingly switch TDM to IP as 4G is co-located with 2G
 - BUT: Lots of BTSs still have physical E1
- A (BSSAP/SCCP/MTP) from BSC to MSC
 - TDM on the decline, moved over to 3GPP AoIP
- Core network
 - TDM based core network connections still prevalent
 - Lots of legacy switches (MSCs) and STPs around

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
000000	00	00000	00000	
E1 interface	• Use cases			

- Many E1/T1 based BTSs decommissioned around the world
- Refurbished traders have quantities in stock for very low price
- Using those BTSs with OsmoBSC + friends is an inexpensive way of
 - Deploying carrier-grade tier-1 BTS equipment
 - With excellent environmental, RF sensitiviy, RF power and high MTBF
 - For very low cost

Introduction	Software Interface 00	Hardware: SAM4S + LIU 00000	Hardware: ice40 00000	Final words
E1 interface:	Existing options			

- PCI / PCIe cards available
- Still fairly expensive
 - Fine for use un the Core network
 - Not so much next to each BTS
- Requires fairly large computers to get full size PCI/PCIe slots

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000	00	00000	00000	
E1 interface:	Building our own			

- Wishlist
 - In 2018, you just want a very small E1/USB or E1/Ethernet adapter
 - Can be used with laptop for on the road debugging
 - Can be used with off-the-shelf cheap/small SBCs
 - Stable/Precise clock for the BTS to use as reference
 - Cheap-ish
- Existing chips
 - Hard to find, many already EOL, the rest to follow
 - Impractical bus interfaces (large parallel bus)
 - Impractical high pin count packages
 - Unreasonably expensive
- "Software Defined" TDM
 - Lower level LIU chips (still 'ACTIVE' status) for electrical interface
 - Serialize / Deserialize from some microcontroller
 - Implement the rest in software (either host or mcu firmware)

• • = • • =

Introduction	Software Interface	Hardware: SAM4S + LIU 00000	Hardware: ice40 00000	Final words 00
Harware op	ptions: Initial tho	ughts		

■ TI PRU (Programable Realtime Unit)

- TI processors like the AM335x on the Beagleboard have PRU cores
- PRU allows high-speed "real time" bit banging and provides buffers to the ARM
- Beaglebone could actually run entire Osmo stack
- XMOS
 - RISC CPU core @ 500 MHz with programmable serdes
 - USB + Ethenet as "Hard IP"
 - Everything else (SPI, I2C, ...) implement in software
- Programmable Logic
 - Not so "software" defined
 - Overkill for a 2Mbit/s signal
 - Toolchains can be an issue

Harware opt	ions: What we	went with		
Introduction ○○○○○○●	Software Interface	Hardware: SAM4S + LIU 00000	Hardware: ice40 00000	Final words

- Atmel SAM4S + IDT 82V2081
 - Probably the smart option here
- ice40 UltraPlus
 - Skip the LIU
 - TBH ... I mostly thought it'd be fun

→ < □ > < □</p>

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words

Software Interface

Sylvain Munaut Open Hardware USB E1 interface (WIP)

• • = • • = •

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000	●0	00000	00000	00
Software Inte	rface: Host			

- Existing support for E1/T1 in libosmo-abis
 - Supports mISDN & DAHDI drivers
 - One fd per timeslot concept
- Use a daemon to handle USB (or ethernet) communication with the interface
 - Handles hardware / timeslot muxing / HLDC / ...
 - Exposes one fd per time-slot to external processes
 - Important to share the device between different processes (OsmoBSC for signalling and OsmoMGW for traffic)
 - RPC method ? Buffer sizes ?

No work done as of yet

0000000		00000	00000	00
Saftwaral	nterface: USB			

USB protocol

- Vendor-specific USB device/interface for control/status
- Isochronous IN and OUT endpoints for traffic
- Exchanges multiples full 32-byte octet-aligned E1 "basic frames"
- Flow control ?
- Exact specs still need to be defined

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words

Hardware: SAM4S + LIU

Sylvain Munaut Open Hardware USB E1 interface (WIP)

A B A A B A

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000	00	●0000	00000	00
SAM4S: Over	rview			

- Work led by Christian Vogel
- LIU: IDT 82V2081
 - Already had a board to experiment with that LIU
 - Alternative considered, but no real gain
- uC: Atmel SAM4S
 - Hardware USB Full-Speed
 - SSC controller to interface the LIU

Introduction 0000000	Software Interface	Hardware: SAM4S + LIU ○●○○○	Hardware: ice40 00000	Final words
SAM4S: Dev	Board			

Sylvain Munaut Open Hardware USB E1 interface (WIP)

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000	00	००●००	00000	00
SAM4S: C	Clocking			

30.72 MHz VCXTO directly clocking the SAM4S

- Common frequency
- Divide by 8, Multiply by 25 -¿ 96 MHz for the USB
- Divide by 15 gives 2.048 MHz for the LIU
- Means no USB SAM-BA :(
 - UART it is then
- Classic GPSDO FLL
 - Count clock cycles between 2 PPS
 - Integrate error to adjust a DAC

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
SAM4S: E1				00

- IDT 82V2081
 - Handles electrical interface
 - Equalization, clock recovery, HDB3 coding, ...
 - Simple Clk/Data interface for TX & RX
- Master clock provided by SAM4S
 - Therefore derived from 30.72M locked to GPS
- Interfaced via SAM4S SSC
- TX:
 - Easy, just send the bits. Receiver has to align.
- RX:
 - Search for proper alignement in the raw bit stream
 - Use the Timer/Counter unit to generate a framing signal
 - Once aligned, no need to do bit-shuffling in software

Introduction 0000000	Software Interface	Hardware: SAM4S + LIU 0000●	Hardware: ice40 00000	Final words
SAM4S: USE	3			

- SAM4S has Hardware USB Full Speed SIU
- Still requires software "drivers"
- Not supported in libopencm3
- Vendor stack is a mess
- Rewrite our own
 - WIP: Enumeration working

Introduction	Software Interface	Hardware: SAM4S $+$ LIU	Hardware: ice40	Final words

Hardware: ice40

Sylvain Munaut Open Hardware USB E1 interface (WIP)

< 一型

Image: A Image: A

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000	00	00000	●0000	00
ice40: Ove	erview			

- Small FPGA by lattice
 - Cheap
 - Convenient (QFN48) package
 - FOSS toolchain available
 - Mostly I thought it'd be fun
- Goal is to minimize chip count

Introduction 0000000	Software Interface 00	Hardware: SAM4S + LIU 00000	Hardware: ice40 ⊙●000	Final words oo
ice40: Dev	r Board			

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000	00	00000	००●००	00
ice40: Clo	cking			

- Same idea as in SAM4S
- 30.72 MHz VCTXO
 - Use FPGA PLL to go to 48M for USB
 - Use FPGA logic to divide by 15 for nominal baud rate
- DAC
 - PDM from FPGA pins
 - If too much noise, will use a "real" DAC

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000		00000	○○○●○	00
ice40: E1	interface			

Electrical interface

- Avoid LIU
- Abuse ice40 differential IO as comparator to detect analog voltages
- Could also avoid magnetics with capacitive coupling
- ... but it's a bit finicky, not worth it
- E1 HDB3/Framing/Sync in FPGA logic
 - RX all done and working
 - TX mostly done, still need framer, but that's trivial

0000000	00	00000	0000	00
ice40: US	B interface			

- Electrical interface
 - For Full Speed, classic CMOS drivers are fine
- Implement a SIU in FPGA logic
- Control with a high level soft core
 - RISC-V most likely
- Very much WIP ...

▶ < E ▶ < E

Introduction	Software Interface	Hardware: SAM4S $+$ LIU	Hardware: ice40	Final words

Final words

Sylvain Munaut Open Hardware USB E1 interface (WIP)

< ロ > < 同 > < 回 > < 回 >

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000		00000	00000	●0
Resources				

- Project: http://osmocom.org/projects/e1-t1-adapter
 - including links to all relevant specs :
 - http://osmocom.org/projects/e1-t1-adapter/wiki/E1_Specifications

Hardware:

- http://git.osmocom.org/osmo-e1-xcvr
- https://github.com/vogelchr/e1_sam4_usb
- https://github.com/vogelchr/e1_sam4_usb_fw

Introduction	Software Interface	Hardware: SAM4S + LIU	Hardware: ice40	Final words
0000000	00	00000	00000	○●
Thanks				

- Christian "sigwinch" Vogel
- Harald "LaF0rge" Welte
- Dieter Spaar

イロト イポト イヨト イヨ