
Application Note
07 April 2004

www.picochip.com

WiMax: OFDM Synchronization on the picoArray

picoChip Designs Ltd. Page 1 of 24

Summary
The 802.16a-2003 standard specifies three different physical (PHY) layers, a host of possible
configurations (e.g. TDD/FDD, channel bandwidth) and a number of optional features. The flexibility in
the standard, limited availability of CPE equipment and time-to-market pressure make a software
solution highly desirable, especially for the BS. However, the sampling rates involved make a full
baseband implementation on single-processor DSPs untenable.
The picoArrayTM combines the programmability of a traditional high-end DSP with the performance of
a FPGA/ASIC. The picoArrayTM is ideally suited for implementing the full baseband for the 802.16
suite of protocols. This application note looks in detail at an implementation of the receiver
synchronization block for the WirelessMAN-OFDM uplink.

Table of Contents

1 INTRODUCTION...3

2 WIRELESSMAN-OFDM..3

2.1 UPLINK DATA PREAMBLE ..4
2.2 RECEIVER SYNCHRONIZATION...5

3 THE PC102 PICOARRAYTM..6

3.1 ARRAY ELEMENTS ...6
3.2 PICOBUS SWITCHING FABRIC ..7

4 UPLINK PREAMBLE DETECTION ON THE PICOARRAYTM..8

4.1 PREAMBLE DETECTION...8
4.2 PICOARRAY

TM
 IMPLEMENTATION..9

4.3 A COMPLETE SYNCHRONIZATION BLOCK ..10
4.4 TEST RESULTS ..11

5 APPENDIX: SOURCE CODE ...13

5.1 SYNC ...13
5.2 BUFFERRX..15
5.3 CALCCORRENGY...17
5.4 CALCV ...19
5.5 SYNCCTRL..21
5.6 TRACKCORRENGY...23

Table of Figures
FIGURE 1 - UPLINK PREAMBLE..4
FIGURE 2 – ‘SYNC’ STRUCTURAL ENTITY..9
FIGURE 3 - PICOARRAY PREAMBLE DETECTION VS MATLAB MODEL ...11

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 2 of 24

Abbreviations

AE Array Element
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise
BS Basestation
BWA Broadband Wireless Access
CP Cyclic Prefix
CPE Customer Premises Equipment
DL Downlink
DSP Digital Signal Processor
FDD Frequency Division Duplex
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
LIW Long Instruction Word
NLOS Non Line Of Sight
OFDM Orthogonal Frequency Division Multiplexing
PDU Protocol Data Unit
PHY Physical layer
PMP Point to Multipoint
SS Subscriber Station
TDD Time Division Duplex
UL Uplink

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 3 of 24

1 Introduction

The picoArray™ is a multi-processor IC which integrates hundreds of processing elements into a
single array. The individual elements have been optimized for signal processing and wireless
algorithm computation and control. The result is a general purpose wireless communications
processor, capable of executing all contemporary wireless standards, which combines the
computational density of a dedicated ASIC with the programmability of a traditional high-end Digital
Signal Processor (DSP).

WiMax is the industry forum name associated with the 802.16 suite of standards for broadband
wireless access (BWA). WiMax offers raw bit rates in excess of 70Mbps (on a 20MHz channel),
quality of service, authentication and data encryption over a metropolitan area.

Much of the focus is on the standard (currently 802.16a-2003) defined for NLOS operation in the
licensed and unlicensed bands in the 2-11GHz range. Of particular interest are the physical (PHY)
layers using orthogonal frequency division multiplexing (OFDM) given their simplicity and robustness
in the presence of multipath.

The performance and flexibility offered by the picoArrayTM make it the ideal platform for implementing
the plethora of options associated with a full WiMax BS baseband solution. This application note
looks in detail at a picoArrayTM implementation of the receiver synchronization block for the
WirelessMAN-OFDM PHY layer.

An overview of the receiver synchronization requirements and preamble used in the WirelessMAN-
OFDM uplink is given in section 2. The key features of the PC102 picoArrayTM are described briefly in
section 3 to assist understanding. A picoArrayTM implementation for obtaining coarse symbol timing is
then given in section 4. This is complemented by a full source listing in section 5.

NOTE: The implementation presented in this application note is for illustrative purposes only. No
claim is made with regard to conformance with the relevant standards.

2 WirelessMAN-OFDM

The WirelessMAN-OFDM PHY is one of the three physical layers defined in the 802.16a-2003 for
NLOS operation in the 2-11GHz range. Each OFDM symbol consists of 256 sub-carriers. A cyclic
prefix (CP) is added before each OFDM symbol for collecting the multipath associated with the
previous symbol. For data symbols, 192 sub-carriers are data bearing, 8 are used as pilots and the
remaining are used as guard bands at the lower and upper frequency extremes.

WiMax specifies a framed (burst) mode of operation but leaves the definition of the actual frame
structure to the individual PHYs. In point-to-multipoint (PMP) mode, the OFDM PHY supports a frame
consisting of a downlink (DL) sub-frame and an uplink (UL) sub-frame.

An uplink sub-frame consists of:

• contention intervals scheduled for initial ranging and bandwidth request purposes, and

• one or multiple UL PHY PDUs, each transmitted from a different subscriber station (SS).

An uplink PHY PDU consists of only one burst, which is made up of a short preamble and an integer

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 4 of 24

number of OFDM symbols.

2.1 Uplink Data Preamble

In the uplink, the data preamble consists of an OFDM symbol containing 2 times 128 samples (in the
time-domain) preceded by a cyclic prefix whose length is the same as the cyclic prefix in the traffic
mode. This is shown in Figure 1.

Figure 1 - Uplink Preamble

The preamble symbol is defined in the frequency domain as shown in Table 1. The repeating halves
of the preamble symbol (in the time domain) are achieved by setting all odd numbered sub-carriers to
null. This effectively makes the data preamble unique as:

• Periods of inactivity are marked by nulls (or AWGN) on all sub-carriers.

• Data symbols will have non-zero values on odd-numbered data sub-carriers.

P(-100:100) = sqrt(2)*sqrt(2)*{ sub-carrier position
 1, 0,-1, 0,-1, 0,-1, 0, 1, 0, 1, 0, [-100:-89]
 1, 0, 1, 0,-1, 0, 1, 0,-1, 0,-1, 0,-1, [-88:-76]
 0, 1, 0,-1, 0, 1, 0, 1, 0, 1, 0, 1, [-75:-64]
 0,-1, 0, 1, 0, 1, 0, 1, 0,-1, 0, 1, 0, [-63:-51
-1, 0, 1, 0, 1, 0,-1, 0,-1, 0, 1, 0, [-50:-39]
-1, 0, 1, 0,-1, 0, 1, 0, 1, 0,-1, 0, 1, [-38:-26]
 0, 1, 0,-1, 0,-1, 0,-1, 0, 1, 0,-1, [-25:-14]
 0,-1, 0,-1, 0,-1, 0,-1, 0, 1, 0, 1, 0, [-13:-1]
 0, [0]
 0, 1, 0,-1, 0,-1, 0, 1, 0,-1, 0, 1, 0, [1:13]
 1, 0, 1, 0, 1, 0,-1, 0, 1, 0, 1, 0, [14:25]
 1, 0, 1, 0,-1, 0, 1, 0,-1, 0,-1, 0,-1, [26:38]
 0,-1, 0, 1, 0, 1, 0,-1, 0, 1, 0,-1, [39:50]
 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0, [51:63]
-1, 0, 1, 0, 1, 0, 1, 0,-1, 0,-1, 0, [64:75]
-1, 0, 1, 0, 1, 0,-1, 0,-1, 0,-1, 0, 1, [76:88]
 0,-1, 0,-1, 0, 1, 0,-1, 0,-1, 0,-1} [89:100]

Table 1 - Sub-carrier values for UL preamble

The uniqueness of the uplink data preamble and its repetitive structure (in the time-domain) simplify
the task of detecting the start of each uplink burst. Symbol timing can be achieved by correlating
received samples separated by ½ an OFDM symbol. This is discussed in more detail in the next
section.

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 5 of 24

2.2 Receiver Synchronization

Achieving receiver synchronization for OFDM involves detecting the start of each OFDM symbol and
detecting and correcting any frequency offsets in the received signal. Detecting and correcting any
frequency offset is especially important for OFDM as even a small offset can result in the orthogonality
between sub-carriers being destroyed at the output of the FFT. Due to the presence of the CP, the
requirements for symbol timing appear less stringent. The symbol can be deemed to start at any point
within the CP not affected by multipath from the previous symbol. An early symbol start manifests as
a phase rotation in the sub-carrier values at the output of the FFT. However, an early symbol start can
degrade the equalization performance.

Coarse symbol timing can be obtained in the BS receiver by exploiting the repetitive structure of the
uplink data preamble. For a (1x sampled) received signal r(k), two correlation values are calculated
on a sample-by-sample basis:

Equation 1 ∑
−=

−=

+×=
128kn

255kn

*)128n(r)n(r)k(P ∑
=

−=

×=
kn

255kn

*)n(r)n(r)k(E

In the absence of noise and sampling errors:

Equation 2

)(elsewhere

symbol) preamble theof end (at the

0

1

)k(E

)k(P2
)k(v

≈
=

×
=

The presence of the CP will actually cause v(k) to reach 1 for several samples before the actual end of
the preamble symbol. The plateau in v(k) makes it difficult to determine the symbol timing precisely,
hence the name coarse symbol timing. Selecting the coarse symbol timing so that it errs towards an
early symbol start (i.e. within the CP) is acceptable for the reason given above. Fine symbol timing
can be performed in the frequency domain to locate the symbol start more accurately. This, however,
is beyond the scope of this application note. Noise and sampling errors (such as aperture jitter) will
result in v(k) falling short of 1 at the end of the preamble.

A frequency offset may comprise of; (a) an integer number of sub-carrier spacings plus (b) a fraction
of a sub-carrier spacing. The fractional frequency offset needs to be corrected before the received
signal can be processed by the FFT. The fractional frequency offset can be determined from the
value of P(k) selected by coarse symbol timing.

() (Hz)offset frequency fractional (radians) P(k)angle ∝

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 6 of 24

3 The PC102 picoArrayTM

An overview of the salient features of the PC102 picoArrayTM is given here in order to understand the
OFDM receiver synchronization block described in section 4. Reference is made to the source code
given in section 5.2 for the receive buffer for illustrative purposes.

The PC102 consists of an array of processors or array elements interconnected by a high-speed
switching fabric called the picoBus.

3.1 Array Elements

The PC102 contains four different types of array elements (AEs) which are detailed in Table 2. Minor
differences exist between the three programmable AE types (STAN2, MEM2 and CTRL2). These
differences include the size of instruction/data memory, additional processing unit and instructions
supported (e.g. multiply-accumulate, multiply). A long instruction word (LIW) of upto 64bits allows
upto 3 execution units to be targeted in a single cycle (160MHz). Each AE has a number of ports for
communicating with other AEs within the array.

In addition to the STAN2, MEM2 and CTRL2 AE types specified in Table 2, software for the PC102
can also be targeted at the ANY2 AE type implying that:

• the function does not use any AE-specific instructions, and

• the code and data memory requirements can be met by all AE types.

Type

Description Number Memory
(Bytes)

STAN2 Standard
A standard AE type includes multiply-accumulate peripheral as well
as special instructions optimized for CDMA spread & de-spread.
Memory is divided between 512 bytes code and 256 bytes data.

240 768

MEM2 Memory
An AE having multiply unit and additional memory.
Memory division between code and data is configurable.

64 8,704

FAU Function Accelerator Unit
A co-processor optimised for specific signal processing tasks (FEC,
preamble detect, FHT, etc). Includes dedicated hardware for trellis
operations.

14 n/a

CTRL2 Control
An AE type with a multiply unit and larger amounts of data and
instruction memory optimized for the implementation of basestation
control functionality.
Memory division between code and data is configurable.

4 65,536

Totals per PC102 device: 322 1,003,520

Table 2: PC102 processor variants and memory distribution

Software, written in C or ASM, is targeted at an AE type depending on the processing units used and
memory required. Section 5.2 shows the ASM source between the code (line 55) and endcode (line

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 7 of 24

68) tags. The C or ASM code for each AE is contained within a picoVHDL wrapper which defines the
ports and the type of AE used amongst other things. In section 5.2, line 36 (begin MEM) tells us that
this code is targeted at a MEM type AE.

NOTE: The MAC, STAN, MEM, CTRL and ANY AE types are also supported on the PC102 for
backwards compatibility with the PC101. Where an AE code body does not use any of the additional
features which are specific to the PC102, using these AE types allows the s/w to run on both the
PC101 and PC102.

3.2 picoBus Switching Fabric

The picoBus is the name given to the switching fabric running vertically and horizontally between the
processing elements in the array. Signals (between AEs) are assigned 32-bit slots on the picoBus at
compile time thereby removing the need for arbitration and making performance completely
deterministic.

Each AE communicates over the picoBus via its ports. These are defined using picoVHDL. Each AE
has a number of ports which can be configured to be read (incoming) or write (outgoing). Lines 28-31
in section 5.2 provide an example. Data sent between AEs is:

• written to a write port FIFO (by the sending AE),

• sent over the picoBus on the next available slot and

• read from the read port FIFO (by the receiving AE).

By default, communication between AEs is data blocking. On attempting to read data from the
picoBus, an AE will block until data becomes available in the read port FIFO. Similarly, when
attempting to write data to the picoBus, the sending AE will block if its write port FIFO is full. A full
write port FIFO infers that the receiving AE’s read port is not taking data (i.e. is full itself).

Bandwidth on the picoBus between communicating AEs is assigned via @-rates. A signal is assigned
an @-rate which is a power of 2, e.g. @8, @16. The @-rate is defined in the port declarations in both
the sending and receiving AEs (see lines 29-31 in section 5.2). This @-rate is relative to the system
clock (160MHz) and indicates how often data may be sent. For example, @8 means that a 32-bit
quantity can be sent every 8 cycles (of the 160MHz bus). The receiving AE(s) must therefore issue a
read (against the associated port) at least once every 8 cycles in order to prevent the sending AE from
blocking.

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 8 of 24

4 Uplink Preamble Detection on the picoArrayTM

The picoArrayTM architecture enables parallelisms within an algorithm to be exploited, resulting in a
level of performance associated with FPGA/ASICs whilst maintaining all the benefits associated with a
software development environment.

This section describes a PC102 picoArrayTM implementation of a BS receiver synchronization block for
the WirelessMAN-OFDM uplink. Coarse symbol timing is extracted from the received signal samples.
The implementation is validated against a simple MATLAB model. The resource and performance
characteristics for the implemented block are summarized below. A full source listing for the block is
given in section 5.

Input ≤10 Msps, 16+j16

AE Resources1 3 MEM, 2 STAN2

1 The MEM AE type is used as no PC102 specific features are required.

Table 3 - PC102 OFDM Rx Synchronization

4.1 Preamble Detection

As discussed in section 2.2, the coarse symbol timing can be determined from the data preamble used
in the OFDM PHY uplink. Rather than calculating v(k) as in Equation 2, v(k) is calculated from the
magnitude squared values of the two correlation values as shown in Equation 3. This avoids having to
calculate the magnitude of the complex value P(k).

Equation 3 2

2

)k(E

)k(P
)k(v =

The coarse symbol timing is determined from the per-sample value of v(k) as follows:
a) As v(k) goes above a threshold value, a counter is started and incremented per sample.
b) The counter continues until v(k) drops below the threshold value for 5 consecutive samples.
c) Once the counter is stopped, it is compared against a threshold value (64). If greater or equal to

this threshold value, a preamble symbol is deemed to have been received.
d) The symbol start is calculated as being ¼ of the way between the counter start and stop samples.

This should mean the symbol timing errs towards an early start to the symbol (i.e. within the CP).

The values for P(k) and E(k), as used in Equation 3, are calculated iteratively as follows:

() ())256k(r)128k(r)128k(r)k(r)1k(P)k(P ** −×−−−×+−=

() ())256k(r)256k(r)k(r)k(r)1k(E)k(E ** −×−−×+−=

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 9 of 24

From the above, it becomes apparent that a certain amount of buffering is required:

• The received samples, r(k), need to be buffered in order to supply the delayed (by ½ OFDM
symbol) samples for calculating P(k). The received samples also need to be buffered due to the
processing delay in determining coarse symbol timing.

• The per-sample values used in the iterative calculations for P(k) and E(k) are buffered to avoid
having to recalculate them.

• The values of P(k) need to be buffered for the period that v(k) is above the detection threshold.
Once coarse symbol timing is determined, the fractional frequency offset can be determined from
the appropriate P(k).

4.2 picoArrayTM Implementation

The picoArrayTM PC102 implementation for the receiver synchronization block is organized as a top-
level structural entity and a number of AE code entities. This is illustrated in Figure 2.

The top-level structural entity (Sync, section 5.1) uses picoVHDL to ‘wire’ the various AE code entities
together. The structural entity effectively encapsulates the AE code entities contained within it and
defines an external interface through which the block is used. The structural entity (Sync) may then
be instantiated one or more times at a higher-level within the overall design.

Figure 2 – ‘Sync’ structural entity

Each AE code entity in Figure 2 runs concurrently and synchronously with respect to the system clock
(160MHz). In order to perform at upto 10Msps, the per-sample signals between the AEs need to be
@16 or faster (e.g. @8). Each AE must also perform its per-sample processing in 16 cycles or less.
The AE code entities are described in more detail in Table 4.

From the AE entity descriptions in Table 4, the CalcV entity is the limiting factor with taking 15 cycles
per sample. To increase the performance significantly above 10Msps, the processing in CalcV could
be split between two AEs, each taking <<15 cycles to process each sample. This is an example of the
deterministic scalable performance offered by the picoArrayTM – performance is increased by
pipelining and exploiting parallelisms within an algorithm.

The CalcCorrEngy, TrackCorrEngy and CalcV entities could be left running for each and every
received sample without any impact on the performance of other algorithms running on the

BufferRx
(MEM)

TrackCorrEngy
(MEM)

CalcCorrEngy
(STAN2)

CalcV
(STAN2)

SyncCtrl
(MEM)

Sync

rxIn trigger

v

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 10 of 24

picoArrayTM. Alternatively, control could be added to the RxBuffer entity which would cause samples
to be sent only when synchronization is being sought. This would cause the CalcCorrEngy,
TrackCorrEngy and CalcV entities to block, resulting in a power saving. With only 8 cycles currently in
the core loop of RxBuffer, this control logic could easily be added without impacting the target 10Msps
performance.

AE Code Body Description

BufferRx The incoming signal samples are buffered in memory. A MEM AE is used so
that several OFDM symbols worth of samples may be buffered to account for the
overall processing delay of the synchronization block.
The current and delayed (buffered) samples are reduced to 8+j8 and then sent
to the CalcCorrEngy AE.
The code body (lines 58-68, section 5.2) uses 8 cycles in its per-sample loop.
As such, BufferRx could either cope with a faster sample rate or additional
functionality could be added (see section 4.3).

CalcCorrEngy The current and delayed signal samples (8+j8) are taken as inputs and the
values for r*(k)r(k) and r*(k)r(k-128) generated as outputs. Use of multiply-
accumulate instructions necessitate the use of a STAN2.
The code body (lines 58-70, section 5.3) uses 10 cycles in its core loop.

TrackCorrEngy The per-sample outputs from CalcCorrEngy are taken and buffered. These
values are used to iteratively calculate the running totals for P(k) and E(k).
These totals are output on a per-sample basis. The buffers for P(k) and E(k)
necessitate the use of a MEM.
The code body (lines 63-89, section 5.6) has 12 cycles in its core loop.

CalcV The per-sample (32-bit) values for P(k) and E(k) are taken as inputs. E(k) and
P(k) are reduced to 16-bit values. A lookup table is used to approximate the
division of P(k) by E(k). A 32-bit value for v is generated as an output on a per-
sample basis. Use of multiply-accumulate instructions necessitate the use of a
STAN2.
The code body (lines 93-131, section 5.4) has 15 cycles in its core loop
(irrespective of the branches taken).

SyncCtrl The per-sample values for v(k) and P(k) are taken as inputs. The detection
algorithm detailed above is used to extract the coarse symbol timing. The
values for P(k) are buffered so that the fractional frequency offset can be
calculated (not actually performed). The amount of buffering necessitates the
use of a MEM.
The code body (lines 65-92, section 5.5) contains 10 cycles in the per-sample
processing loop until the point at which a preamble symbol is deemed to have
been received.

Table 4 - Entities within 'Sync'

4.3 A Complete Synchronization Block

The source code presented in section 5 and described above implements the extraction of coarse
symbol timing for the OFDM PHY uplink. Full receiver synchronization also involves detecting
frequency offsets and making fine timing adjustments as determined from frequency-domain

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 11 of 24

processing. Frequency offset correction is assumed to be performed by a separate NCO and complex
multiplier.

As mentioned in the previous section, additional control logic could be added to the RxBuffer entity
without affecting the 10Msps performance target. The additional control logic could be used to:

• Send samples to the CalcCorrEngy, TrackCorrEngy and CalcV entities only when burst
synchronization is being sought.

• Remove the CP and output the OFDM symbol samples to the next block in the receiver chain (the
frequency offset correction block).

• Apply fine timing adjustments as directed.
With being implemented on a MEM, the code and data memory available should easily be enough for
the above additional tasks.

Similarly, the SyncCtrl entity is also significantly under-utilized. Calculating the fractional frequency
offset could be performed in this AE – indeed, that’s why the P(k) values are buffered in the current
implementation.

4.4 Test Results

The PC102 implementation described in this application note was run in the cycle-accurate picoTools
simulator to verify its functionality. The test vectors and results are read from and written to file by the
simulator. The results where compared against a simple MATLAB model of the algorithm presented in
section 4.1. The normalized results from both the picoArrayTM implementation and the MATLAB model
are shown in Figure 3.

Figure 3 - picoArray preamble detection vs MATLAB model

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 12 of 24

The test inputs used for both the picoArrayTM implementation and MATLAB model consisted of:

• 1x sampled data

• 20-tap channel filter for simulating multipath

• 1/8 CP (32 samples)

• Preamble symbols interspersed by data symbols

• Rx ADC sampling jitter

The red line in Figure 3 indicates the coarse symbol timing determined by the picoArrayTM
implementation.

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 13 of 24

5 Appendix: Source Code

5.1 Sync

-- 1
-- Sync 2
-- 3
-- 4
-- Copyright (c) 2003 picoChip Designs Ltd. 5
-- Proprietary and Confidential Information. 6
-- Not to be copied or distributed. 7
-- 8
-- 9
-- Description: 10
--*** 11
--* @short Structural entity for sync block 12
--* 13
--* The structural entity uses picoVHDL to wire the functional entities 14
--* together. 15
--* 16
--* @port rxIn received sample 17
--* @port v pre sample value for v (correlation^2/energy^2) 18
--* @port trigger signal sent when preamble detected 19
--*** 20
--/ 21
use work.all; 22
 23
entity Sync is 24
 generic(25
 bitwidth : integer); 26
 port(27
 rxIn : in complex16@16; 28
 v : out integer32@16; 29
 trigger : out integer16pair@16); 30
end entity Sync; 31
 32
architecture STRUCTURAL of Sync is 33
 34
 signal rxDel : complex16@16; 35
 signal rxCur : complex16@16; 36
 signal corr : complex16@16; 37
 signal engy : complex16@16; 38
 signal corrTotal : complex16@16; 39
 signal engyTotal : complex16@16; 40
 41
begin 42
 43
 bufRx : entity BufferRx 44
 generic map (45
 bitwidth => bitwidth) 46
 port map (47
 rxIn => rxIn, 48
 rxDel => rxDel, 49
 rxCur => rxCur); 50
 51
 trackPreamble : entity TrackCorrEngy 52
 port map (53
 corr => corr, 54
 engy => engy, 55
 corrTotal => corrTotal, 56
 engyTotal => engyTotal); 57
 58
 calcPreamble : entity CalcCorrEngy 59
 port map (60
 rxDel => rxDel, 61

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 14 of 24

 rxCur => rxCur, 62
 corr => corr, 63
 engy => engy); 64
 65
 calcPoverE : entity CalcV 66
 port map (67
 corrTotal => corrTotal, 68
 engyTotal => engyTotal, 69
 v => v); 70
 71
 preambleSync : entity SyncCtrl 72
 port map (73
 v => v, 74
 corrTotal => corrTotal, 75
 trigger => trigger); 76
 77
end Sync; 78

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 15 of 24

5.2 BufferRx

-- 1
-- BufferRx 2
-- 3
-- 4
-- Copyright (c) 2003 picoChip Designs Ltd. 5
-- Proprietary and Confidential Information. 6
-- Not to be copied or distributed. 7
-- 8
-- 9
-- Description: 10
--*** 11
--* @short Buffer (filtered) receive samples. 12
--* 13
--* After filtering, the receive samples are buffered in order to perform 14
--* preamble detection. 15
--* 16
--* @generic bitwidth bitwidth of received samples (eg. 10 if 10+j10) 17
--* 18
--* @port rxIn Received samples to be buffered 19
--* @port rxDel Delayed sample, 1/2 an OFDM symbol behind 20
--* @port rxCur Current received sample 21
--*** 22
--/ 23
 24
entity BufferRx is 25
 generic(26
 bitwidth : integer); 27
 port(28
 rxIn : in complex16@16; 29
 rxDel : out complex16@16; 30
 rxCur : out complex16@16); 31
end entity BufferRx; 32
 33
architecture ASM of BufferRx is 34
 35
begin MEM -- Uses a MEMORY AE 36
 37
-- Buffer 3 symbols worth (at 1x) plus CPs 38
initialize memory 0 : array(0 to 1023) of integer32 := (others => 0); 39
 40
 -- Initialisation of Registers to zero (apart from delayed sample index) 41
initialize regs := (0,0,128,0,0,0,0,0,0,0,0,0,0,0,0); 42
 43
--Register Definitions. 44
register rxPtr is r0; -- Byte address for base of received sample buffer 45
register rxDelIdx is r1; -- Index into buffer for delayed sample (1/2 sym) 46
register rxCurIdx is r2; -- Index into buffer for current sample 47
register rxCurRe is r4; -- Current sample (real part) 48
register rxCurIm is r5; -- Current sample (imag part) 49
register rxDelRe is r6; -- Delayed sample (real part) 50
register rxDelIm is r7; -- Delayed sample (imag part) 51
register rxNormRe is r8; -- Normalized (to 8+j8) sample (real part) 52
register rxNormIm is r9; -- Normalized (to 8+j8) sample (imag part) 53
 54
code 55
 get rxIn,[rxCurIm:rxCurRe] 56
 57
top: 58
 lsl.0 rxDelIdx,2,rxPtr 59
 add.0 rxDelIdx,1,rxDelIdx \ ldl (rxPtr)0,[rxDelIm:rxDelRe] 60
 asr.0 rxCurIm,bitwidth-8,rxNormIm \ asr.1 rxCurRe,bitwidth-8,rxNormRe 61
 and.0 rxDelIdx,1023,rxDelIdx \ put [rxNormIm:rxNormRe],rxCur 62
 asr.0 rxDelIm,bitwidth-8,rxNormIm \ asr.1 rxDelRe,bitwidth-8,rxNormRe 63
 lsl.0 rxCurIdx,2,rxPtr \ put [rxNormIm:rxNormRe],rxDel 64
 add.0 rxCurIdx,1,rxCurIdx \ stl [rxCurIm:rxCurRe],(rxPtr)0 \ bra top 65
=-> and.0 rxCurIdx,1023,rxCurIdx \ get rxIn,[rxCurIm:rxCurRe] 66

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 16 of 24

 67
endcode; 68
end BufferRx; 69

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 17 of 24

5.3 CalcCorrEngy

-- 1
-- CalcCorrEngy 2
-- 3
-- 4
-- Copyright (c) 2003 picoChip Designs Ltd. 5
-- Proprietary and Confidential Information. 6
-- Not to be copied or distributed. 7
-- 8
-- 9
-- Description: 10
--*** 11
--* @short Calculate correlation and energy values for sample. 12
--* 13
--* The correlation is defined as (a-jb)(c+jd), where (a+jb) is the current 14
--* sample and (c+jb) is the delayed sample. 15
--* NOTE: The conjugate of the current sample is used in the correlation. 16
--* 17
--* The energy is defined as (a+jb)(a-jb). 18
--* 19
--* The delayed and current sample bitwidth <=8 20
--* 21
--* @port rxDel Delayed sample 22
--* @port rxCur Current sample 23
--* @port corr Correlation value (complex) 24
--* @port engy Energy value (real) 25
--*** 26
--/ 27
 28
entity CalcCorrEngy is 29
 port(30
 rxDel : in complex16@16; 31
 rxCur : in complex16@16; 32
 corr : out complex16@16; 33
 engy : out complex16@16); 34
end entity CalcCorrEngy; 35
 36
architecture ASM of CalcCorrEngy is 37
 38
begin STAN2 -- Uses a STAN2 AE 39
 40
 -- Initialisation of Registers to zero 41
initialize regs := (0 to 14 => 0); 42
 43
--Register Definitions. 44
register rxDelRe is r0; -- Delayed sample for correlation (real) 45
register rxDelIm is r1; -- Delayed sample for correlation (imag) 46
register rxCurRe is r2; -- Current sample (real) 47
register rxCurIm is r3; -- Current sample (imag) 48
register corrRe is r4; -- correlation (real) 49
register corrIm is r5; -- correlation (imag) 50
register engyRe is r6; -- energy (real) 51
register engyIm is r7; -- energy (imag=zero) 52
 53
code 54
 get rxCur,[rxCurIm:rxCurRe] 55
 get rxDel,[rxDelIm:rxDelRe] \ mul rxCurRe,rxCurRe,acc0 56
 57
top: 58
 mac rxCurIm,rxCurIm,acc0 59
 readacc acc0,frac,engyRe 60
 put [engyIm:engyRe],engy \ mul rxCurRe,rxDelRe,acc0 61
 mac rxCurIm,rxDelIm,acc0 -- NB: Multiplying delayed by conjugate of current 62
 readacc acc0,frac,corrRe 63
 mul rxCurRe,rxDelIm,acc1 64
 msub rxCurIm,rxDelRe,acc1 -- NB: Multiplying delayed by conjugate of current 65
 readacc acc1,frac,corrIm 66

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 18 of 24

 put [corrIm:corrRe],corr \ get rxCur,[rxCurIm:rxCurRe] \ bra top 67
=-> get rxDel,[rxDelIm:rxDelRe] \ mul rxCurRe,rxCurRe,acc0 68
 69
endcode; 70
end CalcCorrEngy; 71

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 19 of 24

5.4 CalcV

-- 1
-- CalcV 2
-- 3
-- 4
-- Copyright (c) 2003 picoChip Designs Ltd. 5
-- Proprietary and Confidential Information. 6
-- Not to be copied or distributed. 7
-- 8
-- 9
-- Description: 10
--*** 11
--* @short Calculate V = correlation/energy. 12
--* 13
--* As the preamble consists of 2 repeating halfs (in the time domain), 14
--* 2*correlation/energy should approach 1 as the current sample reaches the 15
--* end of the preamble symbol. 16
--* 17
--* This block approximates 2*correlation/energy by correlation^2/energy^2. 18
--* The theoretical max value for correlation^2 is 1/4*energy^2. 19
--* 20
--* The energy total (squared) is normalized to the range 2^15 to 2^16-1. 21
--* The correlation total (squared) is normalized by shift by the same number 22
--* of bits minus 2 (given the max value is 1/4 of energy^2). 23
--* 24
--* A lookup table is used to perform the division. The energy^2 value is 25
--* reduced to 8 bits (bottom 2 bits = 0) to form an index into the table. 26
--* 27
--* At the point of detection correlation^2 should approach energy^2 (due to 28
--* effective multipication by 4 in the shifting above). 29
--* Therefore, taking energy=2^16-1 as an example, the last entry in the 30
--* division LUT is used, giving a result of 2^16-1 * 8224 = 5.39e8. 31
--* v should approach 5.39e8 at the point of detection for all values of 32
--* energy. 33
--* 34
--* A 32-bit value for v is returned. 35
--* 36
--* @port corrTotal Correlation total (summed over half OFDM symbol) 37
--* @port engyTotal Energy total(summed over 1 OFDM symbol) 38
--* @port v correlation^2/energy^2 39
--*** 40
--/ 41
entity CalcV is 42
 port(43
 corrTotal : in complex16@16; 44
 engyTotal : in complex16@16; 45
 v : out integer32@16); 46
end entity CalcV; 47
 48
architecture ASM of CalcV is 49
 50
begin STAN2 51
 52
-- Lookup table for dividing in the range 1/128 to 1/255 53
initialize memory 0 : array(0 to 127) of integer16 := (54
 16384,16257,16132,16009,15888,15768,15650,15534, 55
 15420,15308,15197,15087,14980,14873,14769,14665, 56
 14564,14463,14364,14266,14170,14075,13981,13888, 57
 13797,13707,13618,13530,13443,13358,13273,13190, 58
 13107,13026,12945,12866,12788,12710,12633,12558, 59
 12483,12409,12336,12264,12193,12122,12053,11984, 60
 11916,11848,11782,11716,11651,11586,11523,11460, 61
 11398,11336,11275,11215,11155,11096,11038,10980, 62
 10923,10866,10810,10755,10700,10645,10592,10538, 63
 10486,10434,10382,10331,10280,10230,10180,10131, 64
 10082,10034,9986,9939,9892,9846,9800,9754, 65
 9709,9664,9620,9576,9533,9489,9447,9404, 66

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 20 of 24

 9362,9321,9279,9239,9198,9158,9118,9079, 67
 9039,9001,8962,8924,8886,8849,8812,8775, 68
 8738,8702,8666,8630,8595,8560,8525,8490, 69
 8456,8422,8389,8355,8322,8289,8257,8224 70
); 71
 72
 -- Initialisation of Registers to zero 73
initialize regs := (0 to 14 => 0); 74
 75
--Register Definitions. 76
register corrRe is r0; -- correlation (real) 77
register corrIm is r1; -- correlation (imag) 78
register engyRe is r2; -- energy (real) 79
register engyIm is r3; -- energy (imag=zero) 80
register corr2Lo is r4; -- correlation squared (lower 16-bits) 81
register corr2Hi is r5; -- correlation squared (upper 16-bits) 82
register engy2Lo is r6; -- energy squared (lower 16-bits) 83
register engy2Hi is r7; -- energy squared (upper 16-bits) 84
register signBits is r8; -- num of (redundant) sign bits in energy 85
register dataBits is r9; -- number of data bits 86
register msbIsData is r10; -- MSB in lower 16-bits is data (and not sign) 87
register divIdx is r11; -- Index into division LUT 88
register vLo is r12; -- v (lower 16-bits) 89
register vHi is r13; -- v (upper 16-bits) 90
register xfactor is r14; -- multiplication factor from division LUT 91
 92
code 93
 get engyTotal,[engyIm:engyRe] 94
 mul engyRe,engyRe,acc0 95
 96
top: 97
 get corrTotal,[corrIm:corrRe] \ readacc32 acc0,[engy2Hi:engy2Lo] 98
 sbc engy2Hi,signBits \ mul corrRe,corrRe,acc0 99
 sub.0 signBits,15,r15 \ mac corrIm,corrIm,acc0 100
 lsr.0 engy2Lo,15,msbIsData \ beq lowerBitsOnly 101
=-> readacc32 acc0,[corr2Hi:corr2Lo] 102
 103
upperBits: 104
 -- Energy contains significant bits in upper 16-bit word 105
 -- Shift so that MSB is bit14 (0 to 15) of lower 16-bit word 106
 lsl.0 engy2Hi,signBits,engy2Hi \ sub.1 16,signBits,dataBits 107
 lsr.0 engy2Lo,dataBits,engy2Lo \ lsl.1 corr2Hi,2,corr2Hi 108
 lsl.0 corr2Hi,signBits,corr2Hi \ or.1 engy2Hi,engy2Lo,engy2Lo 109
 and.0 [lsr engy2Lo,7],16#fc#,divIdx \ lsr.1 corr2Lo,2,corr2Lo 110
 lsr.0 corr2Lo,dataBits,corr2Lo \ ldw (divIdx)0,xfactor \ bra compare 111
=-> or.0 corr2Hi,corr2Lo,corr2Lo 112
 113
lowerBitsOnly: 114
 -- Energy only contains significant bits in lower 16-bit work 115
 -- Shift so that MSB is bit14 (0 to 15) of lower 16-bit word 116
 lsr.0 engy2Lo,msbIsData,engy2Lo 117
 sbc engy2Lo,signBits 118
 lsl.0 engy2Lo,signBits,engy2Lo 119
 and.0 [lsr engy2Lo,7],16#fc#,divIdx \ lsl.1 corr2Lo,2,corr2Lo 120
 lsr.0 corr2Lo,msbIsData,corr2Lo \ ldw (divIdx)0,xfactor \ bra compare 121
=-> lsl.0 corr2Lo,signBits,corr2Lo 122
 123
compare: 124
 -- MSB of energy should be after sign bit 125
 mul corr2Lo,xfactor,acc0 126
 readacc32 acc0,[vHi:vLo] 127
 put [vHi:vLo],v \ get engyTotal,[engyIm:engyRe] \ bra top 128
=-> mul engyRe,engyRe,acc0 129
 130
endcode; 131
end CalcV; 132

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 21 of 24

5.5 SyncCtrl

-- 1
-- SyncCtrl 2
-- 3
-- 4
-- Copyright (c) 2003 picoChip Designs Ltd. 5
-- Proprietary and Confidential Information. 6
-- Not to be copied or distributed. 7
-- 8
-- 9
-- Description: 10
--*** 11
--* @short Synchronization control 12
--* 13
--* Coarse symbol timing is determined for the value for v (1 per rx sample). 14
--* Coarse timing is calculated by waiting for v to go above the threshold 15
--* value for a certain number of samples. As v falls back down below the 16
--* threshold then the coarse sample timing is taken as 1/4 of period 17
--* v was above the threshold. 18
--* 19
--* Once coarse timing has been calculated, the initial fractional frequency 20
--* offset can be detemined (not done here). 21
--* 22
--* @port v Approximation of 2*correlation/energy 23
--* @port corrTotal Running correlation total (per sample) 24
--* @port trigger Trigger when coarse timing determined 25
--*** 26
--/ 27
entity SyncCtrl is 28
 port(29
 v : in integer32@16; 30
 corrTotal : in complex16@16; 31
 trigger : out integer16pair@16); 32
end entity SyncCtrl; 33
 34
architecture ASM of SyncCtrl is 35
 36
-- Threshold level taken from upper 16-bits of v. 37
constant VLEVEL : integer := 16#0800#; 38
-- Min number of samples needed above detection level for sync 39
constant VABOVE : integer := 64; 40
-- Number of samples v is allowed to dip below level without resetting 41
constant VBELOW : integer := 5; 42
 43
begin MEM 44
 45
-- Buffer correlation totals 46
initialize memory 0 : array(0 to 256) of integer32 := (others => 0); 47
 48
 -- Initialisation of Registers to zero 49
initialize regs := (0 to 14 => 0); 50
 51
--Register Definitions. 52
register vLo is r0; -- v (lower 16-bits) 53
register vHi is r1; -- v (upper 16-bits) 54
register corrTotalRe is r2; -- running correlation total (real) 55
register corrTotalIm is r3; -- running correlation total (imag) 56
register corrPtr is r4; -- pointer into correlation buffer 57
register belowCtr is r5; -- number of consecutive samples below threshold 58
register nDetect is r6; -- number of samples detected above threshold 59
register nSamples is r7; -- number of samples processed 60
register triggerLo is r8; -- sample number corresponding to the point of 61
detection 62
register triggerHi is r9; -- not used 63
 64
code 65
 66

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 22 of 24

top: 67
 add.0 nSamples,1,nSamples \ get v,[vHi:vLo] 68
 sub.0 vHi,VLEVEL,r15 \ get corrTotal,[corrTotalIm:corrTotalRe] 69
 stl [corrTotalIm:corrTotalRe],(corrPtr)0 \ blt below -- branch if below level 70
=-> sub.0 [lsr corrPtr,2],0,r15 71
 72
above: 73
 copy.0 0,belowCtr \ bra top 74
=-> add.1 corrPtr,4,corrPtr 75
 76
below: 77
 add.0 belowCtr,1,belowCtr \ beq top -- branch if no recent samples above level 78
=-> sub.0 belowCtr,VBELOW,r15 79
 blt top -- branch if still within limit of samples below level 80
=-> sub.0 [lsr corrPtr,2],VABOVE,r15 81
 sub.0 [lsr corrPtr,2],VBELOW,nDetect \ blt top -- branch if not enough samples 82
=-> copy.0 0,corrPtr 83
 84
detect: 85
 -- We've detected enough samples above the level, work out coarse timing 86
 sub.0 nSamples,nDetect,triggerLo \ lsr.1 nDetect,2,nDetect 87
 add.0 triggerLo,nDetect,triggerLo \ bra top 88
=-> put [triggerHi:triggerLo],trigger 89
 90
 91
endcode; 92
end SyncCtrl; 93

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 23 of 24

5.6 TrackCorrEngy

-- 1
-- TrackCorrEngy 2
-- 3
-- 4
-- Copyright (c) 2003 picoChip Designs Ltd. 5
-- Proprietary and Confidential Information. 6
-- Not to be copied or distributed. 7
-- 8
-- 9
-- Description: 10
--*** 11
--* @short Keep running totals for correlation and energy over 1 OFDM symbol 12
--* 13
--* A running correlation total is kept for r'(n)*r(n-128) summed over half 14
--* an OFDM symbol (128 samples at 1x). 15
--* A running energy total is kept for r'(n)*r(n) summed over a full OFDM 16
--* symbol. 17
--* 18
--* The per sample correlation and energy values are buffered. The totals 19
--* are calculated iteratively. 20
--* 21
--* @port corr per sample correlation value 22
--* @port engy per sample energy value 23
--* @port corrTotal current total for correlation (over 1/2 OFDM symbol) 24
--* @port engyTotal current total for energy (over 1 OFDM symbol) 25
--*** 26
--/ 27
entity TrackCorrEngy is 28
 port(29
 corr : in complex16@16; 30
 engy : in complex16@16; 31
 corrTotal : out complex16@16; 32
 engyTotal : out complex16@16); 33
end entity TrackCorrEngy; 34
 35
architecture ASM of TrackCorrEngy is 36
 37
constant CORR_BASE : integer := 0; 38
constant ENGY_BASE : integer := 512; 39
 40
begin MEM 41
 42
initialize memory CORR_BASE : array(0 to 127) of integer32 := (others => 0); 43
initialize memory ENGY_BASE : array(0 to 255) of integer32 := (others => 0); 44
 45
-- Initialisation of Registers to zero 46
initialize regs := (CORR_BASE,0,ENGY_BASE,0,0,0,0,0,0,0,0,0,0,0,0); 47
 48
--Register Definitions. 49
register corrPtr is r0; -- pointer to entry in buffer of correlation values 50
register corrIdx is r1; -- index into correlation buffer 51
register engyPtr is r2; -- pointer to entry in buffer of energy values 52
register engyIdx is r3; -- indx into energy buffer 53
register corrRe is r4; -- per sample correlation value (real) 54
register corrIm is r5; -- per sample correlation value (imag) 55
register corrTotalRe is r6; -- correlation running total (real) 56
register corrTotalIm is r7; -- correlation running total (imag) 57
register engyRe is r8; -- per sample energy value (real) 58
register engyIm is r9; -- per sample energy value (imag=0) 59
register engyTotalRe is r10; -- energy running total (real) 60
register engyTotalIm is r11; -- energy running total (imag=0) 61
 62
code 63
 add.0 [lsl engyIdx,2],ENGY_BASE,engyPtr 64
 65
top: 66

WiMax: OFDM Synchronization on the picoArray Application Note

picoChip Designs Ltd. Page 24 of 24

 -- For correlation and energy: 67
 -- o Calculate pointer into buffer 68
 -- o Read value from buffer - this is the oldest value 69
 -- o Subtract oldest value from total 70
 -- o Get latest per-sample value 71
 -- o Add latest value to total 72
 -- o Write latest value to buffer and advance index 73
 74
 add.0 [lsl corrIdx,2],CORR_BASE,corrPtr \ ldl (engyPtr)0,[engyIm:engyRe] 75
 add.0 engyIdx,1,engyIdx \ ldl (corrPtr)0,[corrIm:corrRe] 76
 add.0 corrIdx,1,corrIdx \ sub.1 engyTotalRe,engyRe,engyTotalRe 77
 sub.0 corrTotalRe,corrRe,corrTotalRe \ sub.1 corrTotalIm,corrIm,corrTotalIm 78
 and.0 engyIdx,255,engyIdx \ get engy,[engyIm,engyRe] 79
 asr.0 engyRe,6,engyRe \ asr.1 engyIm,6,engyIm 80
 add.0 engyRe,engyTotalRe,engyTotalRe \ get corr,[corrIm,corrRe] \ put 81
[engyTotalIm:engyTotalRe],engyTotal 82
 asr.0 corrRe,6,corrRe \ asr.1 corrIm,6,corrIm 83
 add.0 corrRe,corrTotalRe,corrTotalRe \ add.1 corrIm,corrTotalIm,corrTotalIm 84
 and.0 corrIdx,127,corrIdx \ put [corrTotalIm:corrTotalRe],corrTotal 85
 stl [engyIm:engyRe],(engyPtr)0 \ bra top 86
=-> add.0 [lsl engyIdx,2],ENGY_BASE,engyPtr \ stl [corrIm:corrRe],(corrPtr)0 87
 88
endcode; 89
end TrackCorrEngy; 90

