Description

The U6264ASA07 is a static RAM manufactured using a CMOS process technology with the following operating modes:

- Read - Standby
- Write - Data Retention

The memory array is based on a 6-transistor cell.

The circuit is activated by the rising edge of $E2$ (at $E1 = L$), or the falling edge of $E1$ (at $E2 = H$). The address and control inputs are open simultaneously. According to the information of W and G, the data inputs, or outputs, are active. During the active state ($E1 = L$ and $E2 = H$), each address change leads to a new Read or Write cycle. In a Read cycle, the data outputs are activated by the falling edge of G, afterwards the data word read will be available at the outputs $DQ0 - DQ7$. After the address change, the data outputs go High-Z until the new read information is available. The full CMOS data outputs have no preferred state. If the memory is driven by CMOS levels in the active state, and if there is no change of the address, data input and control signals W or G, the operating current (at $I_D = 0 \text{ mA}$) drops to the value of the operating current in the Standby mode. The Read cycle is finished by the falling edge of $E2$ or W, or by the rising edge of $E1$, respectively.

Data retention is guaranteed down to 2 V. With the exception of $E2$, all inputs consist of NOR gates, so that no pull-up/pull-down resistors are required. This gate circuit allows to achieve low power standby requirements by activation with TTL-levels too.

If the circuit is inactivated by $E2 = L$, the standby current (TTL) drops to 150 μA typ.

Features

- 8192 x 8 bit static CMOS RAM
- 70 ns Access Time
- Common data inputs and outputs
- Three-state outputs
- Typ. operating supply current: 30 mA
- TTL/CMOS-compatible
- Automatic reduction of power dissipation in long Read or Write cycles
- Power supply voltage 5 V
- Operating temperature ranges -40 to 125 °C
- Quality assessment according to CECC 90000, CECC 90100 and CECC 90111
- ESD protection > 2000 V (MIL STD 883C M3015.7)
- Latch-up immunity > 100 mA
- Packages: SOP28 (300 mil) SOP28 (330 mil)

Pin Configuration

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0 - A12</td>
<td>Address Inputs</td>
</tr>
<tr>
<td>DQ0 - DQ7</td>
<td>Data In/Outputs</td>
</tr>
<tr>
<td>ET</td>
<td>Chip Enable 1</td>
</tr>
<tr>
<td>E2</td>
<td>Chip Enable 2</td>
</tr>
<tr>
<td>G</td>
<td>Output Enable</td>
</tr>
<tr>
<td>W</td>
<td>Read/Write Enable</td>
</tr>
<tr>
<td>VCC</td>
<td>Power Supply Voltage</td>
</tr>
<tr>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>n.c.</td>
<td>not connected</td>
</tr>
</tbody>
</table>
U6264ASA07

Block Diagram

Truth Table

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>E1</th>
<th>E2</th>
<th>W</th>
<th>G</th>
<th>DQ0 - DQ7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby/not selected</td>
<td>*</td>
<td>L</td>
<td>*</td>
<td>*</td>
<td>High-Z</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>High-Z</td>
</tr>
<tr>
<td>Internal Read</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>High-Z</td>
</tr>
<tr>
<td>Read</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>Data Outputs, Low-Z</td>
</tr>
<tr>
<td>Write</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>*</td>
<td>Data Inputs, High-Z</td>
</tr>
</tbody>
</table>

* H or L

Characteristics

All voltages are referenced to VSS = 0 V (ground).
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.
Dynamic measurements are based on a rise and fall time of \(\leq 5 \text{ ns} \), measured between 10% and 90% of \(V_L \), as well as
input levels of \(V_L = 0 \text{ V} \) and \(V_H = 3 \text{ V} \). The timing reference level of all input and output signals is \(1.5 \text{ V} \),
with the exception of the \(t_{\text{ns}} \) times, in which cases transition is measured \(\pm 200 \text{ mV} \) from steady-state voltage.

<table>
<thead>
<tr>
<th>Maximum Ratings</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>(V_{CC})</td>
<td>-0.3</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>(V_I)</td>
<td>-0.3</td>
<td>(V_{CC} + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_O)</td>
<td>-0.3</td>
<td>(V_{CC} + 0.5)</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_D)</td>
<td>1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>(T_a)</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>(T_{stg})</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td></td>
<td>4.5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CC(DR)}$</td>
<td></td>
<td>2.0</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{IH}</td>
<td></td>
<td>2.2</td>
<td>$V_{CC}+0.3$</td>
<td>V</td>
</tr>
</tbody>
</table>

Supply Current - Operating Mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{CC(OP)}$</td>
<td>$V_{CC} = 5.5, V$ $V_{IL} = 0.8, V$ $V_{IH} = 2.2, V$ $t_{CW} = 70, \text{ns}$</td>
<td>55</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Supply Current - Standby Mode (TTL level)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{CC(SB)}$</td>
<td>$V_{CC} = 5.5, V$ $V_{ET} = V_{E2} = 2.2, V$ or $V_{E1} = 5.5, V$</td>
<td>3</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Output High Voltage

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>$V_{CC} = 4.5, V$ $I_{OH} = -1.0, \text{mA}$</td>
<td>2.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>$V_{CC} = 4.5, V$ $I_{OL} = 3.2, \text{mA}$</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
</tbody>
</table>

Output High Current

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OH}</td>
<td>$V_{CC} = 4.5, V$ $V_{OH} = 2.4, V$ $V_{CC} = 4.5, V$</td>
<td>-</td>
<td>-</td>
<td>mA</td>
</tr>
</tbody>
</table>

Output Low Current

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OL}</td>
<td>$V_{CC} = 4.5, V$ $V_{OL} = 0.4, V$</td>
<td>3.2</td>
<td>-</td>
<td>mA</td>
</tr>
</tbody>
</table>

Supply Current - Standby Mode (CMOS level)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{CC(SB)}$</td>
<td>$V_{CC} = 5.5, V$ $V_{ET} = V_{E2} = 2.2, V$ or $V_{E1} = 5.5, V$</td>
<td>30</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Supply Current - Data Retention Mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{CC(DR)}$</td>
<td>$V_{CC} = 3, V$ $V_{ET} = V_{E2} = 2.2, V$ or $V_{E1} = 5.5, V$</td>
<td>10</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

Input High Leakage Current

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>$V_{CC} = 5.5, V$ $V_{IH} = 5.5, V$ $V_{CC} = 5.5, V$</td>
<td>-</td>
<td>2</td>
<td>µA</td>
</tr>
</tbody>
</table>

Input Low Leakage Current

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IL}</td>
<td>$V_{CC} = 5.5, V$ $V_{IL} = 0, V$</td>
<td>-2</td>
<td>-</td>
<td>µA</td>
</tr>
</tbody>
</table>

Output Leakage Current

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OHZ}</td>
<td>$V_{CC} = 5.5, V$ $V_{OH} = 5.5, V$ $V_{CC} = 5.5, V$</td>
<td>-</td>
<td>2</td>
<td>µA</td>
</tr>
<tr>
<td>I_{OLZ}</td>
<td>$V_{CC} = 5.5, V$ $V_{OL} = 0, V$</td>
<td>-2</td>
<td>-</td>
<td>µA</td>
</tr>
</tbody>
</table>

* -2 V at Pulse Width 10 ns

Note: The table contains electrical characteristics and operating conditions for a device, including supply current, output voltage, input voltages, and leakage currents. The data is presented in a structured format with conditions and values specified for each parameter. The table is annotated with units (V, mA, µA) to indicate the scale of the measurements.
Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Alt.</th>
<th>IEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Output in Low-Z</td>
<td>t_LZ</td>
<td>t_{LOX}</td>
</tr>
<tr>
<td>Cycle Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Cycle Time</td>
<td>t_{WC}</td>
<td>t_{cW}</td>
</tr>
<tr>
<td>Read Cycle Time</td>
<td>t_{RC}</td>
<td>t_{R}</td>
</tr>
<tr>
<td>Access Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET LOW or E2 HIGH to Data Valid</td>
<td>t_{ACE}</td>
<td>$t_{ae(E)}$</td>
</tr>
<tr>
<td>G LOW to Data Valid</td>
<td>t_{OE}</td>
<td>$t_{a(G)}$</td>
</tr>
<tr>
<td>Address to Data Valid</td>
<td>t_{AA}</td>
<td>$t_{a(A)}$</td>
</tr>
<tr>
<td>Pulse Widths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Pulse Width</td>
<td>t_{WP}</td>
<td>$t_{w(W)}$</td>
</tr>
<tr>
<td>Chip Enable to End of Write</td>
<td>t_{CW}</td>
<td>$t_{w(E)}$</td>
</tr>
<tr>
<td>Setup Times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address Setup Time</td>
<td>t_{AS}</td>
<td>$t_{as(A)}$</td>
</tr>
<tr>
<td>Chip Enable to End of Write</td>
<td>t_{CW}</td>
<td>$t_{as(E)}$</td>
</tr>
<tr>
<td>Write Pulse Width</td>
<td>t_{WP}</td>
<td>$t_{w(W)}$</td>
</tr>
<tr>
<td>Data Setup Time</td>
<td>t_{DS}</td>
<td>$t_{w(D)}$</td>
</tr>
<tr>
<td>Data Hold Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address Hold from End of Write</td>
<td>t_{DH}</td>
<td>$t_{h(D)}$</td>
</tr>
<tr>
<td>Output Hold Time from Address Change</td>
<td>t_{OH}</td>
<td>$t_{v(A)}$</td>
</tr>
<tr>
<td>ET HIGH or E2 LOW to Output in High-Z</td>
<td>t_{HZCE}</td>
<td>$t_{dis(E)}$</td>
</tr>
<tr>
<td>W LOW to Output in High-Z</td>
<td>t_{HZWE}</td>
<td>$t_{dis(W)}$</td>
</tr>
<tr>
<td>G HIGH to Output in High-Z</td>
<td>t_{HZOE}</td>
<td>$t_{dis(G)}$</td>
</tr>
</tbody>
</table>

Data Retention Mode E1-Controlled

Data Retention Mode E2-Controlled

V_{E2(DR)} \geq V_{CC(DR)} - 0.2 V or V_{E2(DR)} \leq 0.2 V
V_{CC(DR)} - 0.2 V \leq V_{ET(DR)} \leq V_{CC(DR)} + 0.3 V

Chip Deselect to Data Retention Time t_{DR}^1: min 0 ns
Operating Recovery Time t_{rec}^1: min t_{DR}
Test Configuration for Functional Check
(for TTL output levels)

1) In measurement of \(t_{\text{dis(E)}} \), \(t_{\text{dis(W)}} \), \(t_{\text{dis(G)}} \) the capacitance is 5 pF.

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance</td>
<td>(V_{\text{CC}} = 5.0 , \text{V}) (V_{\text{I}} = V_{\text{SS}})</td>
<td>(C_{\text{I}})</td>
<td>8</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>(f = 1 , \text{MHz}) (T_{\text{a}} = 25 , ^{\circ} \text{C})</td>
<td>(C_{\text{O}})</td>
<td>10</td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

All pins not under test must be connected with ground by capacitors.

IC Code Numbers

Example

Type

Package
S1 = SOP28 (300 mil)
S = SOP28 (330 mil)

Operating Temperature Range
A = -40 to 125 \(^{\circ} \text{C} \)

Internal Code

Access Time
07 = 70 ns

The date of manufacture is given by the last 4 digits of the mark, the first 2 digits indicating the year, and the last 2 digits the calendar week.

December 12, 1997

5
Read Cycle 1 (during Read cycle: \(E1 = \overline{G} = V_{IL}, E2 = \overline{W} = V_{IH} \))

![Diagram of Read Cycle 1]

Read Cycle 2 (during Read cycle: \(\overline{W} = V_{IH} \))

![Diagram of Read Cycle 2]

Write Cycle 1 (\(\overline{W} \)-controlled)

![Diagram of Write Cycle 1]
Write Cycle 2 (E1-controlled)

Write Cycle 3 (E2-controlled)

undefined | L- or H-level
LIFE SUPPORT POLICY
ZMD products are not designed, intended, or authorized for use as components in systems intend for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the ZMD product could create a situation where personal injury or death may occur. Components used in life-support devices or systems must be expressly authorized by ZMD for such purpose.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

Zentrum Mikroelektronik Dresden GmbH
Grenzstraße 28 • D-01109 Dresden • P. O. B. 80 0134 • D-01101 Dresden • Germany
Phone: +49 351 88 22-3 06 • Fax: +49 351 88 22-3 37 • Email: sales@zmd.de
Internet Web Site: http://www.zmd.de