Features

- 7.5 ns pin-to-pin logic delays on all pins
- \(f_{\text{CNT}} \) to 125 MHz
- 72 macrocells with 1,600 usable gates
- Up to 72 user I/O pins
- 5V in-system programmable
 - Endurance of 10,000 program/erase cycles
 - Program/erase over full commercial voltage and temperature range
- Enhanced pin-locking architecture
- Flexible 36V18 Function Block
 - 90 product terms drive any or all of 18 macrocells within Function Block
 - Global and product term clocks, output enables, set and reset signals
- Extensive IEEE Std 1149.1 boundary-scan (JTAG) support
- Programmable power reduction mode in each macrocell
- Slew rate control on individual outputs
- User programmable ground pin capability
- Extended pattern security features for design protection
- High-drive 24 mA outputs
- 3.3V or 5V I/O capability
- Advanced CMOS 5V FastFLASH™ technology
- Supports parallel programming of more than one XC9500 concurrently
- Available in 44-pin PLCC, 84-pin PLCC, 100-pin PQFP, and 100-pin TQFP packages

Description

The XC9572 is a high-performance CPLD providing advanced in-system programming and test capabilities for general purpose logic integration. It is comprised of eight 36V18 Function Blocks, providing 1,600 usable gates with propagation delays of 7.5 ns. See Figure 2 for the architecture overview.

Power Management

Power dissipation can be reduced in the XC9572 by configuring macrocells to standard or low-power modes of operation. Unused macrocells are turned off to minimize power dissipation.

Operating current for each design can be approximated for specific operating conditions using the following equation:

\[
I_{\text{CC}} \text{ (mA)} = M_{\text{CHP}} (1.7) + M_{\text{CLP}} (0.9) + MC (0.006 \text{ mA/MHz}) \times f
\]

Where:

- \(M_{\text{CHP}} \) = Macrocells in high-performance mode
- \(M_{\text{CLP}} \) = Macrocells in low-power mode
- \(MC \) = Total number of macrocells used
- \(f \) = Clock frequency (MHz)

Figure 1 shows a typical calculation for the XC9572 device.
Figure 2: **XC9572 Architecture**

Function block outputs (indicated by the bold line) drive the I/O blocks directly.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Supply voltage relative to GND</td>
<td>–0.5 to 7.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input voltage relative to GND</td>
<td>–0.5 to V_{CC} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{TS}</td>
<td>Voltage applied to 3-state output</td>
<td>–0.5 to V_{CC} + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage temperature (ambient)</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction temperature</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Recommended Operation Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Commercial T_A = 0°C to 70°C</th>
<th>Industrial T_A = –40°C to +85°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CCINT}</td>
<td>Supply voltage for internal logic and input buffers</td>
<td>V_{CCIO}</td>
<td>Supply voltage for output drivers for 5V operation</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Low-level input voltage</td>
<td>0</td>
<td>0.80</td>
</tr>
<tr>
<td>V_{IH}</td>
<td>High-level input voltage</td>
<td>2.0</td>
<td>V_{CCINT} + 0.5</td>
</tr>
<tr>
<td>V_O</td>
<td>Output voltage</td>
<td>0</td>
<td>V_{CCIO}</td>
</tr>
</tbody>
</table>

Quality and Reliability Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{DR}</td>
<td>Data Retention</td>
<td>20</td>
<td>-</td>
<td>Years</td>
</tr>
<tr>
<td>N_{PE}</td>
<td>Program/Erase Cycles (Endurance)</td>
<td>10,000</td>
<td>-</td>
<td>Cycles</td>
</tr>
</tbody>
</table>

DC Characteristic Over Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output high voltage for 5V outputs</td>
<td>$I_{OH} = –4.0$ mA, $V_{CC} = \text{Min}$</td>
<td>2.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output high voltage for 3.3V outputs</td>
<td>$I_{OH} = –3.2$ mA, $V_{CC} = \text{Min}$</td>
<td>2.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output low voltage for 5V outputs</td>
<td>$I_{OL} = 24$ mA, $V_{CC} = \text{Min}$</td>
<td>-</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output low voltage for 3.3V outputs</td>
<td>$I_{OL} = 10$ mA, $V_{CC} = \text{Min}$</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input leakage current</td>
<td>$V_{CC} = \text{Max}$, $V_{IN} = \text{GND}$ or V_{CC}</td>
<td>-</td>
<td>± 10</td>
<td>μA</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>I/O high-Z leakage current</td>
<td>$V_{CC} = \text{Max}$, $V_{IN} = \text{GND}$ or V_{CC}</td>
<td>-</td>
<td>± 10</td>
<td>μA</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>I/O capacitance</td>
<td>$V_{IN} = \text{GND}$, $f = 1.0$ MHz</td>
<td>-</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Operating supply current (low power mode, active)</td>
<td>$V_I = \text{GND}$, No load, $f = 1.0$ MHz</td>
<td>65 (Typical)</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>
AC Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>XC9572-7</th>
<th>XC9572-10</th>
<th>XC9572-15</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP D</td>
<td>I/O to output valid</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
<td>10.0</td>
</tr>
<tr>
<td>TS U</td>
<td>I/O setup time before GCK</td>
<td>4.5</td>
<td>-</td>
<td>6.0</td>
<td>-</td>
</tr>
<tr>
<td>T H</td>
<td>I/O hold time after GCK</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>T C O</td>
<td>GCK to output valid</td>
<td>4.5</td>
<td>-</td>
<td>6.0</td>
<td>-</td>
</tr>
<tr>
<td>f C N T (1)</td>
<td>16-bit counter frequency</td>
<td>125.0</td>
<td>-</td>
<td>111.1</td>
<td>-</td>
</tr>
<tr>
<td>f S Y S T E M (2)</td>
<td>Multiple FB internal operating frequency</td>
<td>83.3</td>
<td>-</td>
<td>66.7</td>
<td>-</td>
</tr>
<tr>
<td>TP S U</td>
<td>I/O setup time before p-term clock input</td>
<td>0.5</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>T P H</td>
<td>I/O hold time after p-term clock input</td>
<td>4.0</td>
<td>-</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>T P C O</td>
<td>P-term clock output valid</td>
<td>-</td>
<td>8.5</td>
<td>-</td>
<td>10.0</td>
</tr>
<tr>
<td>T O E</td>
<td>GTS to output valid</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>T O D</td>
<td>GTS to output disable</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>T P O E</td>
<td>Product term OE to output enabled</td>
<td>-</td>
<td>9.5</td>
<td>-</td>
<td>10.0</td>
</tr>
<tr>
<td>T P O D</td>
<td>Product term OE to output disabled</td>
<td>-</td>
<td>9.5</td>
<td>-</td>
<td>10.0</td>
</tr>
<tr>
<td>T W L H</td>
<td>GCK pulse width (High or Low)</td>
<td>4.0</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>T A P R P W</td>
<td>Asynchronous preset/reset pulse width (High or Low)</td>
<td>7.0</td>
<td>-</td>
<td>7.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

1. fCNT is the fastest 16-bit counter frequency available, using the local feedback when applicable. fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG.
2. fSYSTEM is the internal operating frequency for general purpose system designs spanning multiple FBs.

Figure 3: AC Load Circuit

![AC Load Circuit](DS067_03_110101)
Internal Timing Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>XC9572-7</th>
<th>XC9572-10</th>
<th>XC9572-15</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Buffer Delays</td>
<td></td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Input buffer delay</td>
<td>T_{IN}</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>GCK buffer delay</td>
<td>T_{GCK}</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>GSR buffer delay</td>
<td>T_{GSR}</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>GTS buffer delay</td>
<td>T_{GTS}</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>Output buffer delay</td>
<td>T_{OUT}</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Output buffer enable/disable delay</td>
<td>T_{EN}</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Product Term Control Delays		-	3.0	-	3.0	2.5	ns
Product term clock delay	T_{PTCK}	-	3.0	-	3.0	2.5	ns
Product term set/reset delay	T_{PTSR}	-	2.0	-	2.5	3.0	ns
Product term 3-state delay	T_{PTTS}	-	4.5	-	3.5	5.0	ns

Internal Register and Combinatorial Delays		-	0.5	-	1.0	3.0	ns
Combinatorial logic propagation delay	T_{PDI}	-	0.5	-	1.0	3.0	ns
Register setup time	T_{SUI}	1.5	-	2.5	-	3.5	ns
Register hold time	T_{HI}	3.0	-	3.5	-	4.5	ns
Register clock to output valid time	T_{COI}	-	0.5	-	0.5	0.5	ns
Register async. S/R to output delay	T_{AOI}	-	6.5	-	7.0	8.0	ns
Register async. S/R recover before clock	T_{RAI}	7.5	-	10.0	-	10.0	ns
Internal logic delay	T_{LOGI}	-	2.0	-	2.5	3.0	ns
Internal low power logic delay	T_{LOGILP}	-	10.0	-	11.0	11.5	ns

Feedback Delays		-	8.0	-	9.5	11.0	ns
FastCONNECT feedback delay	T_{F}	-	8.0	-	9.5	11.0	ns
Function block local feedback delay	T_{LF}	-	4.0	-	3.5	3.5	ns

Time Adders		-	1.0	-	1.0	1.0	ns
Incremental product term allocator delay	$T_{PTA}^{(1)}$	-	1.0	-	1.0	1.0	ns
Slew-rate limited delay	T_{SLEW}	-	4.0	-	4.5	5.0	ns

Notes:

1. T_{PTA} is multiplied by the span of the function as defined in the XC9500 family data sheet.
XC9572 I/O Pins

<table>
<thead>
<tr>
<th>Function Block</th>
<th>Macrocell</th>
<th>PC44</th>
<th>PC84</th>
<th>PQ100</th>
<th>TQ100</th>
<th>BScan Order</th>
<th>Function Block</th>
<th>Macrocell</th>
<th>PC44</th>
<th>PC84</th>
<th>PQ100</th>
<th>TQ100</th>
<th>BScan Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>–</td>
<td>4</td>
<td>18</td>
<td>16</td>
<td>213</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>25</td>
<td>43</td>
<td>41</td>
<td>105</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>210</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>17</td>
<td>34</td>
<td>32</td>
<td>102</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>–</td>
<td>6</td>
<td>20</td>
<td>18</td>
<td>207</td>
<td>3</td>
<td>3</td>
<td>–</td>
<td>31</td>
<td>51</td>
<td>49</td>
<td>99</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>–</td>
<td>7</td>
<td>22</td>
<td>20</td>
<td>204</td>
<td>3</td>
<td>4</td>
<td>–</td>
<td>32</td>
<td>52</td>
<td>50</td>
<td>96</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>14</td>
<td>201</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>19</td>
<td>37</td>
<td>35</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>15</td>
<td>198</td>
<td>3</td>
<td>6</td>
<td>–</td>
<td>34</td>
<td>55</td>
<td>53</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>–</td>
<td>11</td>
<td>27</td>
<td>25</td>
<td>195</td>
<td>3</td>
<td>7</td>
<td>–</td>
<td>35</td>
<td>56</td>
<td>54</td>
<td>87</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>19</td>
<td>17</td>
<td>192</td>
<td>3</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>39</td>
<td>37</td>
<td>84</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>–</td>
<td>13</td>
<td>30</td>
<td>28</td>
<td>186</td>
<td>3</td>
<td>10</td>
<td>–</td>
<td>40</td>
<td>62</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>–</td>
<td>18</td>
<td>35</td>
<td>33</td>
<td>180</td>
<td>3</td>
<td>12</td>
<td>–</td>
<td>41</td>
<td>63</td>
<td>61</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>–</td>
<td>20</td>
<td>38</td>
<td>36</td>
<td>177</td>
<td>3</td>
<td>13</td>
<td>–</td>
<td>43</td>
<td>65</td>
<td>63</td>
<td>69</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>8</td>
<td>14</td>
<td>31</td>
<td>29</td>
<td>171</td>
<td>3</td>
<td>15</td>
<td>20</td>
<td>37</td>
<td>58</td>
<td>56</td>
<td>63</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>–</td>
<td>23</td>
<td>41</td>
<td>39</td>
<td>168</td>
<td>3</td>
<td>16</td>
<td>–</td>
<td>45</td>
<td>67</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>9</td>
<td>15</td>
<td>32</td>
<td>30</td>
<td>165</td>
<td>3</td>
<td>17</td>
<td>22</td>
<td>39</td>
<td>60</td>
<td>58</td>
<td>57</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>–</td>
<td>24</td>
<td>42</td>
<td>40</td>
<td>162</td>
<td>3</td>
<td>18</td>
<td>–</td>
<td>–</td>
<td>61</td>
<td>59</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>–</td>
<td>63</td>
<td>89</td>
<td>87</td>
<td>159</td>
<td>4</td>
<td>1</td>
<td>–</td>
<td>46</td>
<td>68</td>
<td>66</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>35</td>
<td>69</td>
<td>96</td>
<td>94</td>
<td>156</td>
<td>4</td>
<td>2</td>
<td>24</td>
<td>44</td>
<td>66</td>
<td>64</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>–</td>
<td>67</td>
<td>93</td>
<td>91</td>
<td>153</td>
<td>4</td>
<td>3</td>
<td>–</td>
<td>51</td>
<td>73</td>
<td>71</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>–</td>
<td>68</td>
<td>95</td>
<td>93</td>
<td>150</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>52</td>
<td>74</td>
<td>72</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>36</td>
<td>70</td>
<td>97</td>
<td>95</td>
<td>147</td>
<td>4</td>
<td>5</td>
<td>25</td>
<td>47</td>
<td>69</td>
<td>67</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>37</td>
<td>71</td>
<td>98</td>
<td>96</td>
<td>144</td>
<td>4</td>
<td>6</td>
<td>–</td>
<td>54</td>
<td>78</td>
<td>76</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>38</td>
<td>72</td>
<td>99</td>
<td>97</td>
<td>138</td>
<td>4</td>
<td>8</td>
<td>26</td>
<td>48</td>
<td>70</td>
<td>68</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>–</td>
<td>75</td>
<td>3</td>
<td>1</td>
<td>132</td>
<td>4</td>
<td>10</td>
<td>–</td>
<td>57</td>
<td>83</td>
<td>81</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>–</td>
<td>79</td>
<td>8</td>
<td>6</td>
<td>126</td>
<td>4</td>
<td>12</td>
<td>–</td>
<td>58</td>
<td>84</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>–</td>
<td>80</td>
<td>10</td>
<td>8</td>
<td>123</td>
<td>4</td>
<td>13</td>
<td>–</td>
<td>61</td>
<td>87</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>43</td>
<td>83</td>
<td>13</td>
<td>11</td>
<td>117</td>
<td>4</td>
<td>15</td>
<td>33</td>
<td>65</td>
<td>91</td>
<td>89</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>–</td>
<td>82</td>
<td>12</td>
<td>10</td>
<td>114</td>
<td>4</td>
<td>16</td>
<td>–</td>
<td>62</td>
<td>88</td>
<td>86</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>44</td>
<td>84</td>
<td>14</td>
<td>12</td>
<td>111</td>
<td>4</td>
<td>17</td>
<td>34</td>
<td>66</td>
<td>92</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>–</td>
<td>–</td>
<td>94</td>
<td>92</td>
<td>108</td>
<td>4</td>
<td>18</td>
<td>–</td>
<td>–</td>
<td>81</td>
<td>79</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. Global control pin.
2. Global control pin GTS1 for PC84, PQ100, and TQ100.
3. Global control pin GTS1 for PC44.
XC9572 Global, JTAG and Power Pins

<table>
<thead>
<tr>
<th>Pin Type</th>
<th>PC44</th>
<th>PC84</th>
<th>PQ100</th>
<th>TQ100</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O/GCK1</td>
<td>5</td>
<td>9</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>I/O/GCK2</td>
<td>6</td>
<td>10</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>I/O/GCK3</td>
<td>7</td>
<td>12</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>I/O/GTS1</td>
<td>42</td>
<td>76</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>I/O/GTS2</td>
<td>40</td>
<td>77</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>I/O/GSR</td>
<td>39</td>
<td>74</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>TCK</td>
<td>17</td>
<td>30</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>TDI</td>
<td>15</td>
<td>28</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>TDO</td>
<td>30</td>
<td>59</td>
<td>85</td>
<td>83</td>
</tr>
<tr>
<td>TMS</td>
<td>16</td>
<td>29</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td>VCCINT 5V</td>
<td>21,41</td>
<td>38,73,78</td>
<td>7,59,100</td>
<td>5,57,98</td>
</tr>
<tr>
<td>VCCIO 3.3V/5V</td>
<td>32</td>
<td>22,64</td>
<td>28,40,53,90</td>
<td>26,38,51,88</td>
</tr>
<tr>
<td>GND</td>
<td>10,23,31</td>
<td>8,16,27,42,49,60</td>
<td>2,23,33,46,64,71,77,86</td>
<td>100,21,31,44,62,69,75,84</td>
</tr>
<tr>
<td>No Connects</td>
<td>-</td>
<td>-</td>
<td>4,9,21,26,36,45,48,75,82</td>
<td>2,7,19,24,34,43,46,73,80</td>
</tr>
</tbody>
</table>
Device Part Marking and Ordering Combination Information

<table>
<thead>
<tr>
<th>Device Ordering and Part Marking Number</th>
<th>Speed (pin-to-pin delay)</th>
<th>Pkg. Symbol</th>
<th>No. of Pins</th>
<th>Package Type</th>
<th>Operating Range(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC9572-7PC44C</td>
<td>7.5 ns</td>
<td>PC44</td>
<td>44-pin</td>
<td>Plastic Lead Chip Carrier (PLCC)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-7PCG44C</td>
<td>7.5 ns</td>
<td>PCG44</td>
<td>44-pin</td>
<td>Plastic Lead Chip Carrier (PLCC); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-7PC84C</td>
<td>7.5 ns</td>
<td>PC84</td>
<td>84-pin</td>
<td>Plastic Lead Chip Carrier (PLCC)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-7PCG84C</td>
<td>7.5 ns</td>
<td>PCG84</td>
<td>84-pin</td>
<td>Plastic Lead Chip Carrier (PLCC); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-7PQ100C</td>
<td>7.5 ns</td>
<td>PQ100</td>
<td>100-pin</td>
<td>Plastic Quad Flat Pack (PQFP)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-7PQG100C</td>
<td>7.5 ns</td>
<td>PQG100</td>
<td>100-pin</td>
<td>Plastic Quad Flat Pack (PQFP); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-7TQ100C</td>
<td>7.5 ns</td>
<td>TQ100</td>
<td>100-pin</td>
<td>Thin Quad Flat Pack (TQFP)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-7TQG100C</td>
<td>7.5 ns</td>
<td>TQG100</td>
<td>100-pin</td>
<td>Thin Quad Flat Pack (TQFP); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10PC44C</td>
<td>10 ns</td>
<td>PC44</td>
<td>44-pin</td>
<td>Plastic Lead Chip Carrier (PLCC)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10PCG44C</td>
<td>10 ns</td>
<td>PCG44</td>
<td>44-pin</td>
<td>Plastic Lead Chip Carrier (PLCC); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10PC84C</td>
<td>10 ns</td>
<td>PC84</td>
<td>84-pin</td>
<td>Plastic Lead Chip Carrier (PLCC)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10PCG84C</td>
<td>10 ns</td>
<td>PCG84</td>
<td>84-pin</td>
<td>Plastic Lead Chip Carrier (PLCC); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10PQ100C</td>
<td>10 ns</td>
<td>PQ100</td>
<td>100-pin</td>
<td>Plastic Quad Flat Pack (PQFP)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10PQG100C</td>
<td>10 ns</td>
<td>PQG100</td>
<td>100-pin</td>
<td>Plastic Quad Flat Pack (PQFP); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10TQ100C</td>
<td>10 ns</td>
<td>TQ100</td>
<td>100-pin</td>
<td>Thin Quad Flat Pack (TQFP)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-10TQG100C</td>
<td>10 ns</td>
<td>TQG100</td>
<td>100-pin</td>
<td>Thin Quad Flat Pack (TQFP); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15PC44C</td>
<td>15 ns</td>
<td>PC44</td>
<td>44-pin</td>
<td>Plastic Lead Chip Carrier (PLCC)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15PCG44C</td>
<td>15 ns</td>
<td>PCG44</td>
<td>44-pin</td>
<td>Plastic Lead Chip Carrier (PLCC); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15PC84C</td>
<td>15 ns</td>
<td>PC84</td>
<td>84-pin</td>
<td>Plastic Lead Chip Carrier (PLCC)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15PCG84C</td>
<td>15 ns</td>
<td>PCG84</td>
<td>84-pin</td>
<td>Plastic Lead Chip Carrier (PLCC); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15PQ100C</td>
<td>15 ns</td>
<td>PQ100</td>
<td>100-pin</td>
<td>Plastic Quad Flat Pack (PQFP)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15PQG100C</td>
<td>15 ns</td>
<td>PQG100</td>
<td>100-pin</td>
<td>Plastic Quad Flat Pack (PQFP); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15TQ100C</td>
<td>15 ns</td>
<td>TQ100</td>
<td>100-pin</td>
<td>Thin Quad Flat Pack (TQFP)</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15TQG100C</td>
<td>15 ns</td>
<td>TQG100</td>
<td>100-pin</td>
<td>Thin Quad Flat Pack (TQFP); Pb-Free</td>
<td>C</td>
</tr>
<tr>
<td>XC9572-15PC44I</td>
<td>15 ns</td>
<td>PC44</td>
<td>44-pin</td>
<td>Plastic Lead Chip Carrier (PLCC)</td>
<td>I</td>
</tr>
</tbody>
</table>

1. This line not related to device part number.
Warranty Disclaimer

THESE PRODUCTS ARE SUBJECT TO THE TERMS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF THE PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED ON THE THEN-CURRENT XILINX DATA SHEET FOR THE PRODUCTS. PRODUCTS ARE NOT DESIGNED TO BE FAIL-SAFE AND ARE NOT WARRANTED FOR USE IN APPLICATIONS THAT POSE A RISK OF PHYSICAL HARM OR LOSS OF LIFE. USE OF PRODUCTS IN SUCH APPLICATIONS IS FULLY AT THE RISK OF CUSTOMER SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

Revision History

The following table shows the revision history for this document.

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/04/98</td>
<td>3.0</td>
<td>Update AC characteristics and internal parameters.</td>
</tr>
<tr>
<td>06/18/03</td>
<td>4.0</td>
<td>Updated format.</td>
</tr>
<tr>
<td>08/21/03</td>
<td>4.1</td>
<td>Updated Package Device Marking Pin 1 orientation.</td>
</tr>
<tr>
<td>04/15/05</td>
<td>4.2</td>
<td>Added asynchronous preset/reset pulse width specification (T_{APRPW})</td>
</tr>
<tr>
<td>04/03/06</td>
<td>4.3</td>
<td>Added Warranty Disclaimer. Added Pb-Free package information.</td>
</tr>
</tbody>
</table>