Project

General

Profile

OsmoTRX » History » Version 37

ttsou, 02/19/2016 10:47 PM
Update device features

1 34 ipse
[[PageOutline]]
2 1 ttsou
= OsmoTRX =
3
4
OsmoTRX is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
5
 * TS 05.01 "Physical layer on the radio path"
6
 * TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
7
 * TS 05.04 "Modulation"
8
 * TS 05.10 "Radio subsystem synchronization"
9
10 29 ttsou
OsmoTRX is based on the OpenBTS transceiver, but setup to operate independently with the purpose of using with non-OpenBTS software and projects. Currently there are numerous features contained in OsmoTRX that extend the functionality of the OpenBTS transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves UmTRX. Most of these features will eventually be merged into mainline OpenBTS, but development will occur primarily on OsmoTRX.
11 6 ttsou
12
== Features ==
13
14 16 ttsou
'''Intel SSE Support'''
15 6 ttsou
* SSE3
16
* SSE4.1
17
18 20 ttsou
On Intel processors, OsmoTRX makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
19 1 ttsou
20 26 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
21 20 ttsou
22 29 ttsou
'''ARM Support'''
23 6 ttsou
* NEON
24 1 ttsou
* NEON-VFPv4
25 6 ttsou
26 20 ttsou
OsmoTRX runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
27 1 ttsou
28 20 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
29
30 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
31 20 ttsou
32 37 ttsou
'''Dual Channel (UmTRX and B210)'''
33 7 ttsou
34
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
35 37 ttsou
path of the dual channel device supports a different ARFCN. Each path operates independently a
36 28 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
37 1 ttsou
38 37 ttsou
'''Dual Channel Diversity (UmTRX, experimental)'''
39 1 ttsou
40 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
41 16 ttsou
42 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
43 20 ttsou
44 33 ttsou
'''Improved Receiver'''
45 30 ttsou
46
OsmoTRX utilizes a recently updated receive burst detection algorithm that provides greater sensitivity and reliability than the previous approach, which relied on energy detection for the initial stage of burst acquisition.
47
48
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
49
50
The current receiver code removes those limitations. Noise and signal level measurements are also now handled in a more responsive manner.
51
52 16 ttsou
'''Low Phase Error Modulator'''
53
54 1 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
55
56
Theoretical details can be found in the report on [http://tsou.cc/gsm/report_gmsk.pdf GMSK]. Octave / Matlab code for [http://tsou.cc/gsm/laurent.m pulse generation] is also available.
57 28 ttsou
58
This option can be enabled or disabled at run time from the command line.
59 16 ttsou
60 20 ttsou
Very Low Phase Error (Ettus Research N200)
61 1 ttsou
62
[[Image(http://tsou.cc/gsm/osmo-trx-phase75.gif)]]
63
64 21 ttsou
Spectrum Mask (Ettus Research N200)
65 1 ttsou
66
[[Image(http://tsou.cc/gsm/osmo-trx-spectrum75.gif)]]
67
68 20 ttsou
== RF Hardware support ==
69 1 ttsou
70 20 ttsou
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the UmTRX from Fairwaves.
71 1 ttsou
72 20 ttsou
||'''Fairwaves'''||'''Notes'''||
73
||UmTRX||Dual channel||
74
75
All Ettus Research devices are supported.
76
77
||'''Ettus Research'''||'''Notes'''||
78
||USRP1||Requires legacy libusrp driver and clocking modification||
79
||USRP2||10 MHz external reference required||
80 1 ttsou
||B100||
81
||B110||
82 20 ttsou
||B200||10 MHz external reference recommended||
83 37 ttsou
||B210||Dual channel, 10 MHz external reference recommended||
84 1 ttsou
||N200||
85
||N210||
86
||E100||
87 20 ttsou
||E110||
88
89 1 ttsou
== Embedded Platform Support ==
90
91 20 ttsou
OsmoTRX has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
92 1 ttsou
93 20 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
94
95
||'''Platform'''||'''SoC'''||'''Processor'''||'''SIMD/FPU'''||'''Testing Notes'''
96
||!ArndaleBoard||Samsung Exynos 5250||ARM Cortex-A15||NEON-VFPv4||7 TCH||
97 21 ttsou
||!BeagleBoard-xM||Texas Instruments OMAP3||ARM Cortex-A8||NEON||7 TCH, remote OsmoBTS stack||
98
||Ettus E100||Texas Instruments OMAP3||ARM Cortex-A8||NEON||7 TCH, remote OsmoBTS stack||
99
||Raspberry Pi||Broadcom BCM2835||ARM11||VFP||2 TCH, remote OsmoBTS stack||
100 1 ttsou
||Shuttle PC||NA||Intel Atom D2550||SSE3||Dual channel, 15 TCH||
101 20 ttsou
102 25 ttsou
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
103 19 ttsou
104
== Mailing List ==
105 18 ttsou
106 1 ttsou
For development purposes, OsmoTRX is discussed on both OpenBTS and OpenBSC mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
107
108 22 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
109 19 ttsou
110 16 ttsou
Subscription information is available at [https://lists.sourceforge.net/lists/listinfo/openbts-discuss] and [http://lists.osmocom.org/mailman/listinfo/openbsc/].
111 19 ttsou
112
== GPRS support ==
113 16 ttsou
114 1 ttsou
OsmoTRX supports GPRS through OsmoBTS.
115 16 ttsou
116 1 ttsou
For GPRS support with OpenBTS, please use the transceiver supplied with OpenBTS.
117
118
== Source code ==
119 16 ttsou
120 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
121
122
Public read-only access is available via
123 36 ttsou
{{{
124
$ git clone git://git.osmocom.org/osmo-trx
125
}}}
126 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
127 18 ttsou
128
== Configuration and Build ==
129 19 ttsou
130 1 ttsou
The only package dependency is the Universal Hardware Driver (UHD), which is available from Ettus Research or Fairwaves depending on the device. Please note that the UHD implementation must match hardware (i.e. Ettus Research UHD for USRP devices and Fairwaves UHD with UmTRX). The one device that does not use the UHD driver is the USRP1, which is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
131 36 ttsou
132
First, run autoreconf to remake the build system files.
133
{{{
134
$ autoreconf -i
135
...
136
}}}
137 1 ttsou
138 18 ttsou
'''Intel Platforms (All)'''
139
140
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
141
{{{
142
$ ./configure
143
...
144 1 ttsou
checking whether mmx is supported... yes
145 18 ttsou
checking whether sse is supported... yes
146
checking whether sse2 is supported... yes
147
checking whether sse3 is supported... yes
148
checking whether ssse3 is supported... yes
149
checking whether sse4.1 is supported... yes
150 1 ttsou
checking whether sse4.2 is supported... yes
151 19 ttsou
...
152 18 ttsou
}}}
153
154
'''ARM Platforms with NEON'''
155
156
Many popular ARM development boards fall under this category including !BeagleBoard, !PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
157
{{{
158 19 ttsou
$ ./configure --with-neon
159 18 ttsou
}}}
160
161
'''ARM Platforms with NEON-VFPv4'''
162
163
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are !ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
164
{{{
165
$ ./configure --with-neon-vfpv4
166
}}}
167
168
'''ARM Platforms without NEON'''
169
170
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running OsmoTRX. Running OsmoTRX on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
171 1 ttsou
172 24 ttsou
Coming soon...
173 18 ttsou
174 16 ttsou
'''Build and Install'''
175
176
After configuration, installation is simple.
177
178
{{{
179 18 ttsou
$ make
180 19 ttsou
$ sudo make install
181 16 ttsou
}}}
182
183
== Running ==
184
185
OsmoTRX can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
186
187
{{{
188
$ osmo-trx -h
189
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
190
191
Options:
192
  -h    This text
193
  -a    UHD device args
194
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
195
  -i    IP address of GSM core
196
  -p    Base port number
197
  -d    Enable dual channel diversity receiver
198
  -x    Enable external 10 MHz reference
199
  -s    Samples-per-symbol (1 or 4)
200
  -c    Number of ARFCN channels (default=1)
201
}}}
202
203
{{{
204
$ osmo-trx -a "addr=192.168.10.2"
205
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
206
207
Config Settings
208
   Log Level............... INFO
209
   Device args............. addr=192.168.10.2
210
   TRX Base Port........... 5700
211 1 ttsou
   TRX Address............. 127.0.0.1
212 16 ttsou
   Channels................ 1
213 1 ttsou
   Samples-per-Symbol...... 4
214
   External Reference...... Disabled
215 16 ttsou
   Diversity............... Disabled
216
217
-- Opening a UmTRX device...
218
-- Current recv frame size: 1472 bytes
219
-- Current send frame size: 1472 bytes
220
-- Setting UmTRX 4 SPS
221 19 ttsou
-- Transceiver active with 1 channel(s)
222 13 ttsou
}}}
223 19 ttsou
224
== Benchmarks ==
225 17 ttsou
226 13 ttsou
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in OsmoTRX, but one stop higher in the Layer 1 stack - either in OsmoBTS or OpenBTS core.
227
228 35 ttsou
'''Repository'''
229 1 ttsou
230 35 ttsou
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as OsmoTRX. The test code may be merged into OsmoTRX at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as OsmoTRX.
231 1 ttsou
232 35 ttsou
{{{
233
$ git clone https://github.com/ttsou/trx-bench.git
234
235
$ cd trx-bench
236
$ autoreconf -i
237
$ ./configure [--with-neon] [--with-neon-vfp4]
238
$ make
239
$ src/conv_test
240
$ src/convert_test
241
$ src/convolve_test
242
}}}
243
244
The convolutional decoding test includes command options including experimental support for benchmarking with multiple threads.
245
246
{{{
247
$ ./conv_test -h
248
Options:
249
  -h    This text
250
  -i    Number of iterations
251
  -j    Number of threads for benchmark (1 to 32)
252
  -b    Run benchmark tests
253
  -a    Run validity checks
254
  -e    Run bit-error-rate tests
255
}}}
256
257
Selected benchmark results are provided below. All tests are run on a single core only.
258
259 13 ttsou
'''Intel Haswell (i7 4770K 3.5 GHz)'''
260
261
{{{
262 10 ttsou
--- Floating point to integer conversions
263
-- Testing 40000 iterations of 3120 values
264 1 ttsou
- Measuring conversion time
265
- Elapsed time base...                  0.065508 secs
266
- Validating SIMD conversion results... PASS
267
- Measuring conversion time
268
- Elapsed time SIMD ...                 0.011424 secs
269
- Speedup...                            5.734244
270
}}}
271
272
{{{
273
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
274
[.] Input length  : ret = 165  exp = 165 -> OK
275
[.] Output length : ret = 448  exp = 448 -> OK
276 3 ttsou
[.] Pre computed vector checks:
277
[..] Encoding: OK
278
[..] Decoding base: 
279
[..] Decoding SIMD: 
280
[..] Code N 3
281
[..] Code K 7
282
OK
283
[.] Random vector checks:
284
[.] Testing baseline:
285
[..] Encoding / Decoding 10000 cycles:
286
[.] Elapsed time........................ 1.435066 secs
287
[.] Rate................................ 3.121808 Mbps
288 1 ttsou
[.] Testing SIMD:
289
[..] Encoding / Decoding 10000 cycles:
290 17 ttsou
[.] Elapsed time........................ 0.073524 secs
291 1 ttsou
[.] Rate................................ 60.932485 Mbps
292
[.] Speedup............................. 19.518334
293
}}}
294
295 17 ttsou
'''Intel Atom (D2500 1.86 GHz)'''
296
{{{
297
--- Floating point to integer conversions
298
-- Testing 40000 iterations of 3120 values
299
- Measuring conversion time
300
- Elapsed time base...                 1.147449 secs
301
- Validating SSE conversion results... PASS
302
- Measuring conversion time
303
- Elapsed time SSE ...                 0.347838 secs
304
- Quotient...                          3.298803
305
}}}
306
307
{{{
308
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
309
[.] Input length  : ret = 165  exp = 165 -> OK
310
[.] Output length : ret = 448  exp = 448 -> OK
311
[.] Pre computed vector checks:
312
[..] Encoding: OK
313
[..] Decoding base: 
314
[..] Decoding SIMD: 
315
[..] Code N 3
316 1 ttsou
[..] Code K 7
317
OK
318
[.] Random vector checks:
319 17 ttsou
[.] Testing baseline:
320
[..] Encoding / Decoding 10000 cycles:
321
[.] Elapsed time........................ 11.822688 secs
322
[.] Rate................................ 0.378932 Mbps
323
[.] Testing SIMD:
324
[..] Encoding / Decoding 10000 cycles:
325
[.] Elapsed time........................ 0.550423 secs
326 19 ttsou
[.] Rate................................ 8.139195 Mbps
327
[.] Speedup............................. 21.479277
328
}}}
329 17 ttsou
330
'''!ArndaleBoard (ARM Cortex-A15 1.7 GHz)'''
331
332
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
333
334
{{{
335
--- Floating point to integer conversions
336
-- Testing 40000 iterations of 3120 values
337
- Measuring conversion time
338
- Elapsed time base...                 0.384097 secs
339
- Validating SSE conversion results... PASS
340
- Measuring conversion time
341
- Elapsed time SSE ...                 0.100877 secs
342
- Quotient...                          3.807578
343
}}}
344
345
{{{
346
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
347
[.] Input length  : ret = 165  exp = 165 -> OK
348
[.] Output length : ret = 448  exp = 448 -> OK
349
[.] Pre computed vector checks:
350
[..] Encoding: OK
351
[..] Decoding base: 
352
[..] Decoding SIMD: 
353
[..] Code N 3
354
[..] Code K 7
355
OK
356
[.] Random vector checks:
357
[.] Testing baseline:
358
[..] Encoding / Decoding 10000 cycles:
359
[.] Elapsed time........................ 5.371288 secs
360
[.] Rate................................ 0.834064 Mbps
361
[.] Testing SIMD:
362
[..] Encoding / Decoding 10000 cycles:
363
[.] Elapsed time........................ 1.016621 secs
364
[.] Rate................................ 4.406755 Mbps
365
[.] Speedup............................. 5.283471
366
}}}
367
368 3 ttsou
'''!BeagleBoard-xM (ARM Cortex-A8 800 MHz)'''
369
{{{
370
--- Floating point to integer conversions
371
-- Testing 40000 iterations of 3120 values
372
- Measuring conversion time
373
- Elapsed time base...                  6.292542 secs
374
- Validating SIMD conversion results... PASS
375
- Measuring conversion time
376
- Elapsed time SIMD ...                 0.839081 secs
377 5 ttsou
- Quotient...                           7.499326
378 3 ttsou
}}}
379
380
{{{
381 4 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
382 3 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
383
[.] Output length : ret = 448  exp = 448 -> OK
384
[.] Pre computed vector checks:
385 1 ttsou
[..] Encoding: OK
386
[..] Decoding base: 
387
[..] Decoding SIMD: 
388 31 ttsou
[..] Code N 3
389
[..] Code K 7
390
OK
391
[.] Random vector checks:
392
[.] Testing baseline:
393
[..] Encoding / Decoding 10000 cycles:
394
[.] Elapsed time........................ 21.963257 secs
395
[.] Rate................................ 0.203977 Mbps
396
[.] Testing SIMD:
397 1 ttsou
[..] Encoding / Decoding 10000 cycles:
398 32 ttsou
[.] Elapsed time........................ 3.083282 secs
399
[.] Rate................................ 1.452997 Mbps
400
[.] Speedup............................. 7.123337
401
}}}
402
403
404
'''Full Results'''
405
406
[http://tsou.cc/gsm/haswell.txt]
407
408
[http://tsou.cc/gsm/shuttle.txt]
409
410
[http://tsou.cc/gsm/arndale.txt]
411
412
[http://tsou.cc/gsm/beagle.txt]
413
414 31 ttsou
415 1 ttsou
== Authors ==
416
417 30 ttsou
OsmoTRX is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the OpenBTS project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)