Project

General

Profile

Rtl-sdr » History » Version 205

fixeria, 11/17/2023 01:23 PM

1 185 steve-m
{{>toc}}
2 1 steve-m
3 185 steve-m
h1. rtl-sdr
4 1 steve-m
5
6 185 steve-m
DVB-T dongles based on the Realtek RTL2832U can be used as a cheap SDR, since the chip allows transferring the raw I/Q samples to the host, which is officially used for DAB/DAB+/FM demodulation. The possibility of this has been discovered by Eric Fry ("History and Discovery of RTLSDR":http://rtlsdr.org/#history_and_discovery_of_rtlsdr). Antti Palosaari has not been involved in development of rtl-sdr.
7 1 steve-m
8 185 steve-m
h2. Specifications
9
10 1 steve-m
11 196 steve-m
The RTL2832U outputs 8-bit I/Q-samples, and the highest theoretically possible sample-rate is 3.2 MS/s, however, the highest sample-rate without lost samples that has been tested wit regular USB controllers so far is 2.4 MS/s. A stable sample-rate of 3.2 MS/s without lost samples is only possible with the Etron EJ168/EJ188/EJ198 series of host controllers due to their "specific maximum latency":https://osmocom.org/attachments/3979/Histo_DATA_Packets.png.  The frequency range is highly dependent of the used tuner, *dongles that use the Elonics E4000 offer the widest possible range (see table below)*.
12 185 steve-m
13 186 laforge
|*Tuner*|*Frequency range*|
14
|Elonics E4000|52 - 2200 MHz with a gap from 1100 MHz to 1250 MHz (varies)|
15
|Rafael Micro R820T|24 - 1766 MHz|
16
|Rafael Micro R828D|24 - 1766 MHz|
17
|Fitipower FC0013|22 - 1100 MHz (FC0013B/C, FC0013G has a separate L-band input, which is unconnected on most sticks)|
18
|Fitipower FC0012|22 - 948.6 MHz|
19
|FCI FC2580|146 - 308 MHz and 438 - 924 MHz (gap in between)|
20 1 steve-m
21 185 steve-m
h2. Supported Hardware
22
23
24 203 fixeria
*Note:* Many devices with EEPROM have 0x2838 as PID and RTL2838 as product name, but in fact all of them have an RTL2832U inside.
25 188 steve-m
Realtek never released a chip marked as RTL2838 so far.
26 1 steve-m
The following devices are known to work fine with RTLSDR software:
27 43 steve-m
28 186 laforge
|*VID*|*PID*|*tuner*|*device name*|
29
|0x0bda|0x2832|all of them|Generic RTL2832U (e.g. hama nano)|
30
|0x0bda|0x2838|E4000|ezcap USB 2.0 DVB-T/DAB/FM dongle|
31
|0x0ccd|0x00a9|FC0012|Terratec Cinergy T Stick Black (rev 1)|
32
|0x0ccd|0x00b3|FC0013|Terratec NOXON DAB/DAB+ USB dongle (rev 1)|
33
|0x0ccd|0x00d3|E4000|Terratec Cinergy T Stick RC (Rev.3)|
34
|0x0ccd|0x00e0|E4000|Terratec NOXON DAB/DAB+ USB dongle (rev 2)|
35
|0x185b|0x0620|E4000|Compro Videomate U620F|
36
|0x185b|0x0650|E4000|Compro Videomate U650F|
37
|0x1f4d|0xb803|FC0012|GTek T803|
38
|0x1f4d|0xc803|FC0012|Lifeview LV5TDeluxe|
39
|0x1b80|0xd3a4|FC0013|Twintech UT-40|
40
|0x1d19|0x1101|FC2580|Dexatek DK DVB-T Dongle (Logilink VG0002A)|
41
|0x1d19|0x1102|?|Dexatek DK DVB-T Dongle (MSI [[DigiVox]] mini II V3.0)|
42
|0x1d19|0x1103|FC2580|Dexatek Technology Ltd. DK 5217 DVB-T Dongle|
43
|0x0458|0x707f|?|Genius TVGo DVB-T03 USB dongle (Ver. B)|
44
|0x1b80|0xd393|FC0012|GIGABYTE GT-U7300|
45
|0x1b80|0xd394|?|DIKOM USB-DVBT HD|
46
|0x1b80|0xd395|FC0012|Peak 102569AGPK|
47
|0x1b80|0xd39d|FC0012|SVEON STV20 DVB-T USB & FM|
48 42 Hoernchen
49 185 steve-m
People over at reddit "are collecting a list (v2)":http://www.reddit.com/r/RTLSDR/comments/s6ddo/rtlsdr_compatibility_list_v2_work_in_progress/ of other devices that are compatible.
50 2 steve-m
51 174 steve-m
If you find a device that is not yet in the device list but should be supported, please send the VID/PID and additional info (used tuner, device name) to our mailing list.
52 5 steve-m
53 186 laforge
This is the PCB of the ezcap-stick:
54
!ezcap_top.jpg!
55 1 steve-m
More pictures can be found "here":http://www.steve-m.de/pictures/rtl-sdr/.
56 2 steve-m
57 185 steve-m
h2. Software
58
59
60 157 steve-m
Much software is available for the RTL2832. Most of the user-level packages rely on the librtlsdr library which comes as part of the rtl-sdr codebase. This codebase contains both the library itself and also a number of command line tools such as rtl_test, rtl_sdr, rtl_tcp, and rtl_fm. These command line tools use the library to test for the existence of RTL2832 devices and to perform basic data transfer functions to and from the device.
61
62
Because most of the RTL2832 devices are connected using USB, the librtlsdr library depends on the libusb library to communicate with the device.
63 158 steve-m
64 181 steve-m
At the user level, there are several options for interacting with the hardware. The rtl-sdr codebase contains a basic FM receiver program that operates from the command line. The rtl_fm program is a command line tool that can initialize the RTL2832, tune to a given frequency, and output the received audio to a file or pipe the output to command line audio players such as the alsa aplay or the sox play commands. There is also the rtl_sdr program that will output the raw I-Q data to a file for more basic analysis.
65 1 steve-m
66
For example, the following command will do reception of commercial wide-band FM signals:
67
68 185 steve-m
<pre>
69 158 steve-m
rtl_fm -f 96.3e6 -M wbfm -s 200000 -r 48000 - | aplay -r 48k -f S16_LE
70 185 steve-m
</pre>
71 1 steve-m
72
On a Mac, a similar command that works is as follows. This assumes that the sox package is installed, 'port install sox':
73
74 185 steve-m
<pre>
75 1 steve-m
rtl_fm -f 90100000 -M wbfm -s 200000 -r 48000 - | play -r 48000 -t s16 -L -c 1  -
76 185 steve-m
</pre>
77 1 steve-m
78
If you want to do more advanced experiments, the GNU Radio collection of tools can be used to build custom radio devices. GNU Radio can be used both from a GUI perspective in which you can drag-and-drop radio components to build a radio and also programmatically where software programs written in C or Python are created that directly reference the internal GNU Radio functions.
79
80
The use of GNU Radio is attractive because of the large number of pre-built functions that can easily be connected together. However, be aware that this is a large body of software with dependencies on many libraries. Thankfully there is a simple script that will perform the installation but still, the time required can be on the order of hours. When starting out, it might be good to try the command line programs that come with the rtl-sdr package first and then install the GNU Radio system later.
81 158 steve-m
82 190 laforge
h3. Binary Builds
83
84
h4. Windows
85
86
While Osmocom in general is a very much Linux-centric development community, we are now finally publishing automatic weekly Windows binary builds for the most widely used Osmocom SDR related projects:  [[rtl-sdr:]] and [[osmo-fl2k:]].
87
88
You can find the binaries at
89
* https://ftp.osmocom.org/binaries/windows/osmo-fl2k/
90
* https://ftp.osmocom.org/binaries/windows/rtl-sdr/
91
92
The actual builds are done by @roox who is building them using MinGW on OBS, see
93
* https://build.opensuse.org/project/show/network:osmocom:mingw:mingw32 and
94
* https://build.opensuse.org/project/show/network:osmocom:mingw:mingw64
95
96
The status of the osmocom binary publish job, executed once per week from now on, can be found at https://jenkins.osmocom.org/jenkins/view/All%20no%20Gerrit/job/Osmocom-OBS_MinGW_weekly_publish/
97
98 189 laforge
h3. Source Code
99
100 157 steve-m
The rtl-sdr code can be checked out with:
101 185 steve-m
<pre>
102 199 laforge
git clone https://gitea.osmocom.org/sdr/rtl-sdr.git
103 185 steve-m
</pre>
104 172 steve-m
105 202 laforge
It can also be browsed via "gitea":https://gitea.osmocom.org/sdr/rtl-sdr/, and there's an official "mirror on github":https://github.com/osmocom/rtl-sdr that also provides "tagged releases":https://github.com/osmocom/rtl-sdr/tags.
106 48 horiz0n
107 1 steve-m
If you are going to "fork it on github" and enhance it, please contribute back and submit your patches to: osmocom-sdr at lists.osmocom.org
108
109 191 laforge
A [[gr-osmosdr:]] GNU Radio source block for [[OsmoSDR:]] *and rtl-sdr* is available. *Please install a recent gnuradio (>= v3.6.4) in order to be able to use it.*
110 29 horiz0n
111 187 laforge
h3. Building the software
112 185 steve-m
113
h4. rtlsdr library & capture tool
114
115
116
*You have to install development packages for libusb1.0* and can either use cmake or autotools to build the software.
117
118 1 steve-m
Please note: prior pulling a new version from git and compiling it, please do a "make uninstall" first to properly remove the previous version.
119 20 horiz0n
120 1 steve-m
Building with cmake:
121 185 steve-m
<pre>
122 1 steve-m
cd rtl-sdr/
123 33 steve-m
mkdir build
124 19 steve-m
cd build
125
cmake ../
126 1 steve-m
make
127
sudo make install
128
sudo ldconfig
129 185 steve-m
</pre>
130 1 steve-m
131 130 horiz0n
In order to be able to use the dongle as a non-root user, you may install the appropriate udev rules file by calling cmake with -DINSTALL_UDEV_RULES=ON argument in the above build steps.
132 185 steve-m
<pre>
133 1 steve-m
cmake ../ -DINSTALL_UDEV_RULES=ON
134 185 steve-m
</pre>
135 19 steve-m
136 1 steve-m
Building with autotools:
137 185 steve-m
<pre>
138 19 steve-m
cd rtl-sdr/
139 1 steve-m
autoreconf -i
140 130 horiz0n
./configure
141 1 steve-m
make
142 19 steve-m
sudo make install
143 1 steve-m
sudo ldconfig
144 185 steve-m
</pre>
145 1 steve-m
146
The built executables (rtl_sdr, rtl_tcp and rtl_test) can be found in rtl-sdr/src/.
147 130 horiz0n
148
In order to be able to use the dongle as a non-root user, you may install the appropriate udev rules file by calling
149 185 steve-m
<pre>
150 1 steve-m
sudo make install-udev-rules
151 185 steve-m
</pre>
152 169 Hoernchen
153 185 steve-m
h4. Gnuradio Source
154 1 steve-m
155 185 steve-m
156
*The Gnu Radio source requires a recent gnuradio (>= v3.7 if building master branch or 3.6.5 when building gr3.6 branch) to be installed.*
157
158 177 steve-m
The source supports direct device operation as well as a tcp client mode when using the rtl_tcp utility as a spectrum server.
159 1 steve-m
160 27 horiz0n
Please note: prior pulling a new version from git and compiling it, please do a "make uninstall" first to properly remove the previous version.
161 1 steve-m
162 185 steve-m
Please note: you always should build & *install the latest version of the dependencies (librtlsdr in this case)* before trying to build the gr source. The build system of gr-osmosdr will recognize them and enable specific source/sink components thereafter.
163 164 horiz0n
164 185 steve-m
Building with cmake (as described in the [[GrOsmoSDR|gr-osmosdr wiki page]]):
165 1 steve-m
166 185 steve-m
<pre>
167 199 laforge
git clone https://gitea.osmocom.org/sdr/gr-osmosdr
168 1 steve-m
cd gr-osmosdr/
169 185 steve-m
</pre>
170 1 steve-m
171
If you are building for gnuradio 3.6 series, you have to switch to the gr3.6 branch as follows
172 185 steve-m
<pre>
173 1 steve-m
git checkout gr3.6
174 185 steve-m
</pre>
175 1 steve-m
176 166 horiz0n
then continue with
177 1 steve-m
178 185 steve-m
<pre>
179 1 steve-m
mkdir build
180 161 horiz0n
cd build/
181
cmake ../
182 185 steve-m
</pre>
183 161 horiz0n
184 1 steve-m
Now cmake should print out a summary of enabled/disabled components. You may disable certain components by following guidelines shown by cmake. Make sure the device of your interest is listed here. Check your dependencies and retry otherwise.
185 185 steve-m
<pre>
186 1 steve-m
-- ######################################################
187
-- # gr-osmosdr enabled components                         
188
-- ######################################################
189 161 horiz0n
--   * Python support
190
--   * Osmocom IQ Imbalance Correction
191 185 steve-m
--   * sysmocom [[OsmoSDR]]
192
--   * [[FunCube]] Dongle
193 1 steve-m
--   * IQ File Source
194
--   * Osmocom RTLSDR
195 161 horiz0n
--   * RTLSDR TCP Client
196
--   * Ettus USRP Devices
197 185 steve-m
--   * Osmocom [[MiriSDR]]
198
--   * [[HackRF]] Jawbreaker
199 1 steve-m
-- 
200
-- ######################################################
201
-- # gr-osmosdr disabled components                        
202
-- ######################################################
203
-- 
204
-- Building for version: 4c101ea4 / 0.0.1git
205
-- Using install prefix: /usr/local
206 185 steve-m
</pre>
207 1 steve-m
208
Now build & install
209 185 steve-m
<pre>
210 1 steve-m
make
211
sudo make install
212
sudo ldconfig
213 185 steve-m
</pre>
214 1 steve-m
215
NOTE: The osmocom source block (osmocom/RTL-SDR Source) will appear under 'Sources' category in GRC menu.
216
217
For initial tests we recommend the multimode receiver gnuradio companion flowgraph (see "Known Apps" table below).
218 79 horiz0n
219
You may find more detailed installation instructions in this recent "tutorial":http://blog.opensecurityresearch.com/2012/06/getting-started-with-gnu-radio-and-rtl.html.
220 1 steve-m
221
h4. Automated installation
222
223
Marcus D. Leech has kindly integrated the forementioned build steps into his gnuradio installation script at "This is the most user-friendly option so far.
224 205 fixeria
225 189 laforge
h2. Mailing List
226 1 steve-m
227 201 laforge
We discuss both [[OsmoSDR]] as well as rtl-sdr on the following 
228
* web forum: https://discourse.osmocom.org/c/sdr
229
* mailing list: [mailto:osmocom-sdr@lists.osmocom.org].
230 1 steve-m
231
You can subscribe and/or unsubscribe via the following link: https://lists.osmocom.org/mailman/listinfo/osmocom-sdr
232 189 laforge
233 185 steve-m
Please make sure to read the [[cellular-infrastructure:MailingListRules]] before posting.
234
235 189 laforge
h3. Usage
236
237
h4. rtl-sdr
238
239
240 76 horiz0n
Example: To tune to 392.0 MHz, and set the sample-rate to 1.8 MS/s, use:
241 110 horiz0n
242 185 steve-m
<pre>
243 1 steve-m
./rtl_sdr /tmp/capture.bin -s 1.8e6 -f 392e6
244 185 steve-m
</pre>
245 74 horiz0n
246
to record samples to a file or to forward the data to a fifo.
247 1 steve-m
248 90 horiz0n
If the device can't be opened, make sure you have the appropriate rights to access the device (install udev-rules from the repository, or run it as root).
249
250 74 horiz0n
251 185 steve-m
h4. rtl_tcp
252
253
254 2 steve-m
Example:
255
256 185 steve-m
<pre>
257
rtl_tcp -a 10.0.0.2 [-p listen port (default: 1234)":http://www.sbrac.org/files/build-gnuradio].
258 3 steve-m
Found 1 device(s).
259 2 steve-m
Found Elonics E4000 tuner
260 6 steve-m
Using Generic RTL2832U (e.g. hama nano)
261 22 horiz0n
Tuned to 100000000 Hz.
262
listening...
263 185 steve-m
Use the device argument 'rtl_tcp=10.0.0.2:1234' in [[OsmoSDR]] (gr-osmosdr) source
264 115 horiz0n
to receive samples in GRC and control rtl_tcp parameters (frequency, gain, ...).
265 185 steve-m
</pre>
266 59 horiz0n
267 32 horiz0n
use the rtl_tcp=... device argument in gr-osmosdr source to receive the samples in GRC and control the rtl settings remotely.
268
269
This application has been successfully crosscompiled for ARM and MIPS devices and is providing IQ data in a networked ADS-B setup at a rate of 2.4MSps. The gr-osmosdr source is being used together with an optimized gr-air-modes version (see Known Apps below).
270 185 steve-m
It is also available as a package in [[OpenWRT]].
271 60 horiz0n
272 185 steve-m
A use case is described "here":https://sites.google.com/site/embrtlsdr/.
273 60 horiz0n
274 185 steve-m
275
h4. rtl_test
276 89 steve-m
277 185 steve-m
To check the possible tuning range (may heavily vary by some MHz depending on device and temperature), call
278 63 horiz0n
<pre>
279 1 steve-m
rtl_test -t
280
</pre>
281
282
To check the maximum samplerate possible on your machine, type (change the rate down until no sample loss occurs):
283
<pre>
284
rtl_test -s 3.2e6
285
</pre>
286
A samplerate of 2.4e6 is known to work even over tcp connections (see rtl_tcp above). A sample rate of 2.88e6 may work without lost samples but this may depend on your PC/Laptop's host interface.
287
288
h2. Using the data
289
290
291
To convert the data to a standard cfile, following GNU Radio Block can be used:[[br]]
292 186 laforge
!rtl2832-cfile.png!
293 194 laforge
The GNU Radio Companion flowgraph is available as attachment:rtl2832-cfile.grc. It is based on the FM demodulation flowgraph posted by Alistair Buxton "on this thread":http://thread.gmane.org/gmane.linux.drivers.video-input-infrastructure/44461/focus=44525.
294 1 steve-m
295
Please note: for realtime operation you may use fifos (mkfifo) to forward the iq data from the capture utility to the GRC flowgraph.
296
297
You may use any of the the following gnuradio sources (they are equivalent):
298
299 192 laforge
!osmosource.png!
300
301 200 laforge
What has been successfully tested so far is the reception of "Broadcast FM and air traffic AM":https://www.cgran.org/browser/projects/multimode/trunk radio, [[tetra:]], [[gmr:]], "GSM":http://svn.berlin.ccc.de/projects/airprobe/, "ADS-B":https://www.cgran.org/wiki/gr-air-modes and "POCSAG":https://github.com/smunaut/osmo-pocsag.
302 1 steve-m
303 198 steve-m
Tell us your success story with other wireless protocols in ##rtlsdr channel on the "libera":https://libera.chat/ IRC network.
304 185 steve-m
305 128 horiz0n
h2. Known Apps
306
307
308 185 steve-m
The following 3rd party applications and libraries are successfully using either librtlsdr directly or the corresponding gnuradio source (gr-osmosdr):
309
310 186 laforge
|*Name*|*Type*|*Author*|*URL*|
311
|gr-pocsag|GRC Flowgraph|Marcus Leech|https://www.cgran.org/browser/projects/gr-pocsag/trunk|
312
|multimode RX (try first!)|GRC Flowgraph|Marcus Leech|https://www.cgran.org/browser/projects/multimode/trunk|
313
|simple_fm_rvc|GRC Flowgraph|Marcus Leech|https://www.cgran.org/browser/projects/simple_fm_rcv/trunk|
314
|python-librtlsdr|Python Wrapper|David Basden|https://github.com/dbasden/python-librtlsdr|
315
|pyrtlsdr|Python Wrapper|Roger|https://github.com/roger-/pyrtlsdr|
316
|rtlsdr-waterfall|Python FFT GUI|Kyle Keen|https://github.com/keenerd/rtlsdr-waterfall|
317
|Wireless Temp. Sensor RX|Gnuradio App|Kevin Mehall|https://github.com/kevinmehall/rtlsdr-433m-sensor|
318
|QtRadio|SDR GUI|Andrea Montefusco et al.|http://napan.ca/ghpsdr3/index.php/RTL-SDR|
319
|gqrx|SDR GUI|Alexandru Csete|https://github.com/csete/gqrx|
320
|rtl_fm|SDR CLI|Kyle Keen|merged in librtlsdr master|
321
|SDR#|SDR GUI|Youssef Touil|http://sdrsharp.com/ and "Windows Guide":http://rtlsdr.org/softwarewindows or "Linux Guide":http://rtlsdr.org/softwarelinux|
322
|tetra_demod_fft|Trunking RX|osmocom team|"osmosdr-tetra_demod_fft.py":http://cgit.osmocom.org/cgit/osmo-tetra/tree/src/demod/python/osmosdr-tetra_demod_fft.py and the "HOWTO":http://tetra.osmocom.org/trac/wiki/osmo-tetra#Quickexample|
323
|airprobe|GSM sniffer|osmocom team et al|http://git.gnumonks.org/cgi-bin/gitweb.cgi?p=airprobe.git|
324
|gr-smartnet (WIP)|Trunking RX|Nick Foster|http://www.reddit.com/r/RTLSDR/comments/us3yo/rtlsdr_smartnet/ "Notes from the author":http://www.reddit.com/r/RTLSDR/comments/vbxl0/attention_grsmartnet_users_or_attempted_users/|
325
|gr-air-modes|ADS-B RX|Nick Foster|https://www.cgran.org/wiki/gr-air-modes call with --rtlsdr option|
326
|Linrad|SDR GUI|Leif Asbrink (SM5BSZ)|http://www.nitehawk.com/sm5bsz/linuxdsp/hware/rtlsdr/rtlsdr.htm" DAGC changes were applied to librtlsdr master|
327
|gr-ais (fork)|AIS RX|Nick Foster, Antoine Sirinelli, Christian Gagneraud|https://github.com/chgans/gr-ais|
328
|GNSS-SDR|GPS RX (Realtime!)|Centre Tecnològic de elecomunicacions de Catalunya|"Documentation":http://www.gnss-sdr.org/documentation/gnss-sdr-operation-realtek-rtl2832u-usb-dongle-dvb-t-receiver and http://www.gnss-sdr.org/|
329
|LTE-Cell-Scanner|LTE Scanner / Tracker|James Peroulas, Evrytania LLC|http://www.evrytania.com/lte-tools https://github.com/Evrytania/LTE-Cell-Scanner]|
330
|LTE-Cell-Scanner OpenCL accelerated *(new)*|LTE Scanner / Tracker|Jiao Xianjun|https://github.com/JiaoXianjun/LTE-Cell-Scanner|
331
|Simulink-RTL-SDR|MATLAB/Simulink wrapper|Michael Schwall, Sebastian Koslowski, Communication Engineering Lab (CEL), Karlsruhe Institute of Technology (KIT)|http://www.cel.kit.edu/simulink_rtl_sdr.php|
332
|gr-scan|Scanner|techmeology|http://www.techmeology.co.uk/gr-scan/|
333
|kalibrate-rtl|calibration tool|Joshua Lackey, Alexander Chemeris, Steve Markgraf|https://github.com/steve-m/kalibrate-rtl "Windows build":http://rtlsdr.org/files/kalibrate-win-release.zip|
334
|pocsag-mrt|Multichannel Realtime ]Decoder|iZsh|https://github.com/iZsh/pocsag-mrt|
335
|adsb#|ADS-B RX|Youssef Touil, Ian Gilmour|http://sdrsharp.com/index.php/a-simple-and-cheap-ads-b-receiver-using-rtl-sdr|
336 200 laforge
|osmo-gmr-rtl|GMR1 RX|Dimitri Stolnikov|https://osmocom.org/projects/gmr/wiki/GettingStarted#RTLSDRdongles|
337 186 laforge
|rtl_adsb|ADS-B RX|Kyle Keen|comes with the library|
338
|dump1090|ADS-B RX|Salvatore Sanfilippo|https://github.com/antirez/dump1090|
339
|rtl_433|Temperature Sensor Receiver|Benjamin Larsson|https://github.com/merbanan/rtl_433|
340
|randio|Random number generator|Michel Pelletier|https://github.com/michelp/randio|
341
|gr-wmbus|m-bus (EN 13757-4) RX|oWCTejLVlFyNztcBnOoh|https://github.com/oWCTejLVlFyNztcBnOoh/gr-wmbus|
342
|ec3k|EnergyCount 3000 RX|Tomaž Šolc|https://github.com/avian2/ec3k|
343
|RTLSDR-Scanner|Radio Scanner|EarToEarOak|https://github.com/EarToEarOak/RTLSDR-Scanner|
344
|simple_ra|Radio Astronomy App|Marcus Leech|https://cgran.org/wiki/simple_ra|
345
|rtlizer|Spectrum analyzer|Alexandru Csete|https://github.com/csete/rtlizer|
346
|FS20_decode|FS20 Decoder|Thomas Frisch|https://github.com/eT0M/rtl_sdr_FS20_decoder|
347
|OpenLTE|LTE Toolkit|Ben Wojtowicz|http://sourceforge.net/p/openlte/home/Home/|
348
|rtltcpaccess|DAB compatibility layer|Steve Markgraf|https://github.com/steve-m/rtltcpaccess|
349
|SDR-J|"Analog" SDR & DAB|Jan van Katwijk|http://www.sdr-j.tk|
350
|RTLTcpSource|source for redhawk SDR framework|Michael Ihde|"redhawk Docs page":http://redhawksdr.github.io/Documentation/ "RTLTcpSource":https://github.com/Axios-Engineering/acquisition-components|
351
|gortlsdr|Golang wrapper|Joseph Poirier|https://github.com/jpoirier/gortlsdr|
352
|gr-rds (fork)|RDS + WBFM receiver|Dimitrios Symeonidis et al|https://github.com/bastibl/gr-rds|
353
|NRF24-BTLE-Decoder|Decoder for 2.4 GHz NRF24 & Bluetooh LE|Omri Iluz|"Code":https://github.com/omriiluz/NRF24-BTLE-Decoder "Blog post":http://blog.cyberexplorer.me/2014/01/sniffing-and-decoding-nrf24l01-and.html|
354
|acarsdec|ACARS decoder|Thierry Leconte|http://sourceforge.net/projects/acarsdec/|
355 197 Hoernchen
|rtl-sdr-airband|air band reiceiver/ATIS|Wong Man Hang|https://github.com/microtony/RTLSDR-Airband|
356 186 laforge
357
358 193 laforge
Also take a look at the applications which use rtl-sdr [[gr-osmosdr:GrOsmoSDR#KnownApps|through gr-osmosdr]].
359 186 laforge
360 1 steve-m
Using our lib? Tell us! Don't? Tell us why! :)
361
362 186 laforge
!rtl-sdr-gmr.png!
363
Multiple GMR-carriers can be seen in a spectrum view with the full 3.2 MHz bandwidth (at 3.2 MS/s).
364 185 steve-m
365
h2. Credits
366 1 steve-m
367
368
rtl-sdr is developed by Steve Markgraf, Dimitri Stolnikov, and Hoernchen, with contributions by Kyle Keen, Christian Vogel and Harald Welte.
Add picture from clipboard (Maximum size: 48.8 MB)