Project

General

Profile

OsmoTRX » History » Version 16

ttsou, 02/19/2016 10:47 PM

1 1 ttsou
= OsmoTRX =
2 1 ttsou
3 1 ttsou
OsmoTRX is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
4 1 ttsou
 * TS 05.01 "Physical layer on the radio path"
5 1 ttsou
 * TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
6 1 ttsou
 * TS 05.04 "Modulation"
7 1 ttsou
 * TS 05.10 "Radio subsystem synchronization"
8 1 ttsou
9 6 ttsou
OsmoTRX is based on the OpenBTS transceiver, but setup to operate independently with the purpose of using with non-OpenBTS software and projects. Currently there are numerous features contained in OsmoTRX that extend the functionality of the OpenBTS transceiver. These features include enhanced support for embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves UmTRX. Most of these features will eventually be merged into mainline OpenBTS, but primary development will occur on OsmoTRX.
10 6 ttsou
11 6 ttsou
== Features ==
12 6 ttsou
13 16 ttsou
'''Intel SSE Support'''
14 6 ttsou
* SSE3
15 6 ttsou
* SSE4.1
16 6 ttsou
17 6 ttsou
On Intel processors, OsmoTRX makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use. SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors.
18 6 ttsou
19 16 ttsou
'''ARM NEON Support'''
20 6 ttsou
* NEON
21 6 ttsou
* NEON-VFPv4
22 6 ttsou
23 1 ttsou
OsmoTRX runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions. Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (BeagleBoard), and Cortex-A15 (ArndaleBoard). These platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4 respectively. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations. NEON optimization must be used enabled at built time.
24 9 ttsou
25 16 ttsou
'''Dual Channel (UmTRX only)'''
26 6 ttsou
27 7 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
28 7 ttsou
path of the dual channel device - currently only UmTRX - supports a different ARFCN. Each path operates independently a
29 7 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled.
30 7 ttsou
31 16 ttsou
'''Dual Channel Diversity (UmTRX only)'''
32 7 ttsou
33 8 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. The limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path.
34 1 ttsou
35 16 ttsou
'''Low Phase Error Modulator'''
36 1 ttsou
37 16 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. On capable devices, the signal measures with very low phase error and passes industry spectrum mask requirements.
38 1 ttsou
39 16 ttsou
Phase Error (Ettus Research N200)
40 1 ttsou
41 16 ttsou
[[Image(http://tsou.cc/gsm/osmo-trx-phase75.gif)]]
42 16 ttsou
43 16 ttsou
Frequency Spectrum (Ettus Research N200)
44 16 ttsou
45 16 ttsou
[[Image(http://tsou.cc/gsm/osmo-trx-spectrum75.gif)]]
46 16 ttsou
47 1 ttsou
== Hardware support ==
48 1 ttsou
49 9 ttsou
Fairwaves
50 9 ttsou
||UmTRX||
51 9 ttsou
52 1 ttsou
Ettus Research
53 1 ttsou
||USRP1||
54 1 ttsou
||USRP2||
55 1 ttsou
||B100||
56 1 ttsou
||B110||
57 1 ttsou
||B200||
58 1 ttsou
||B210||
59 1 ttsou
||N200||
60 1 ttsou
||N210||
61 1 ttsou
||E100||
62 1 ttsou
||E110||
63 1 ttsou
64 1 ttsou
== Embedded Platform Support ==
65 1 ttsou
66 1 ttsou
OsmoTRX has been tested on the following embedded platforms.
67 1 ttsou
68 9 ttsou
||Platform||Processor||SIMD/FPU||
69 1 ttsou
||BeagleBoard-xM||ARM Cortex-A8||NEON||
70 1 ttsou
||ArndaleBoard||ARM Cortex-A15||NEON-VFPv4||
71 2 ttsou
||RaspberryPi||ARMv6k||VFP||
72 1 ttsou
||Shuttle PC||Intel Atom D2550||SSE3||
73 1 ttsou
||Ettus E100||ARM Cortex-A8||NEON||
74 1 ttsou
75 1 ttsou
== Mailing List ==
76 1 ttsou
77 1 ttsou
For development purposes, OsmoTRX is discussed on both OpenBTS and OpenBSC mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively. Subscription information is available at [https://lists.sourceforge.net/lists/listinfo/openbts-discuss] and [http://lists.osmocom.org/mailman/listinfo/openbsc/]. Please direct questions to the list appropriate for the GSM stack being used.
78 1 ttsou
79 16 ttsou
== Status ==
80 16 ttsou
81 16 ttsou
== GPRS support ==
82 16 ttsou
83 16 ttsou
== Source code ==
84 16 ttsou
85 16 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
86 16 ttsou
87 16 ttsou
Public read-only access is available via
88 16 ttsou
 git clone git://git.osmocom.org/osmo-trx
89 16 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
90 16 ttsou
91 16 ttsou
== Configuration and Build ==
92 16 ttsou
93 16 ttsou
The only package dependency is the Universal Hardware Driver (UHD).
94 16 ttsou
95 16 ttsou
{{{
96 16 ttsou
$ ./configure
97 16 ttsou
$ make
98 16 ttsou
$ sudo make install
99 16 ttsou
}}}
100 16 ttsou
101 16 ttsou
== Running ==
102 16 ttsou
103 16 ttsou
{{{
104 16 ttsou
$ osmo-trx -h
105 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
106 16 ttsou
107 16 ttsou
Options:
108 16 ttsou
  -h    This text
109 16 ttsou
  -a    UHD device args
110 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
111 16 ttsou
  -i    IP address of GSM core
112 16 ttsou
  -p    Base port number
113 16 ttsou
  -d    Enable dual channel diversity receiver
114 16 ttsou
  -x    Enable external 10 MHz reference
115 16 ttsou
  -s    Samples-per-symbol (1 or 4)
116 16 ttsou
  -c    Number of ARFCN channels (default=1)
117 16 ttsou
}}}
118 16 ttsou
119 16 ttsou
{{{
120 16 ttsou
$ osmo-trx -a "addr=192.168.10.2"
121 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
122 16 ttsou
123 16 ttsou
Config Settings
124 16 ttsou
   Log Level............... INFO
125 16 ttsou
   Device args............. addr=192.168.10.2
126 16 ttsou
   TRX Base Port........... 5700
127 16 ttsou
   TRX Address............. 127.0.0.1
128 16 ttsou
   Channels................ 1
129 16 ttsou
   Samples-per-Symbol...... 4
130 16 ttsou
   External Reference...... Disabled
131 16 ttsou
   Diversity............... Disabled
132 16 ttsou
133 16 ttsou
-- Opening a UmTRX device...
134 16 ttsou
-- Current recv frame size: 1472 bytes
135 16 ttsou
-- Current send frame size: 1472 bytes
136 16 ttsou
-- Setting UmTRX 4 SPS
137 16 ttsou
-- Transceiver active with 1 channel(s)
138 16 ttsou
}}}
139 16 ttsou
140 13 ttsou
== Benchmarks ==
141 13 ttsou
142 13 ttsou
Selected benchmark results are provided below. All tests run on a single core only.
143 13 ttsou
144 13 ttsou
Intel Haswell (i7 4770K 3.5 GHz)
145 13 ttsou
146 13 ttsou
{{{
147 13 ttsou
--- Floating point to integer conversions
148 13 ttsou
-- Testing 40000 iterations of 3120 values
149 13 ttsou
- Measuring conversion time
150 13 ttsou
- Elapsed time base...                  0.065508 secs
151 13 ttsou
- Validating SIMD conversion results... PASS
152 10 ttsou
- Measuring conversion time
153 10 ttsou
- Elapsed time SIMD ...                 0.011424 secs
154 1 ttsou
- Speedup...                            5.734244
155 1 ttsou
}}}
156 1 ttsou
157 1 ttsou
{{{
158 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
159 1 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
160 1 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
161 1 ttsou
[.] Pre computed vector checks:
162 1 ttsou
[..] Encoding: OK
163 1 ttsou
[..] Decoding base: 
164 1 ttsou
[..] Decoding SIMD: 
165 1 ttsou
[..] Code N 3
166 3 ttsou
[..] Code K 7
167 3 ttsou
OK
168 3 ttsou
[.] Random vector checks:
169 3 ttsou
[.] Testing baseline:
170 3 ttsou
[..] Encoding / Decoding 10000 cycles:
171 3 ttsou
[.] Elapsed time........................ 1.435066 secs
172 3 ttsou
[.] Rate................................ 3.121808 Mbps
173 3 ttsou
[.] Testing SIMD:
174 3 ttsou
[..] Encoding / Decoding 10000 cycles:
175 3 ttsou
[.] Elapsed time........................ 0.073524 secs
176 3 ttsou
[.] Rate................................ 60.932485 Mbps
177 3 ttsou
[.] Speedup............................. 19.518334
178 3 ttsou
}}}
179 3 ttsou
180 3 ttsou
BeagleBoard-xM (ARM Cortex-A8 800 MHz)
181 3 ttsou
{{{
182 3 ttsou
--- Floating point to integer conversions
183 3 ttsou
-- Testing 40000 iterations of 3120 values
184 3 ttsou
- Measuring conversion time
185 3 ttsou
- Elapsed time base...                  6.292542 secs
186 3 ttsou
- Validating SIMD conversion results... PASS
187 3 ttsou
- Measuring conversion time
188 3 ttsou
- Elapsed time SIMD ...                 0.839081 secs
189 3 ttsou
- Quotient...                           7.499326
190 3 ttsou
}}}
191 3 ttsou
192 3 ttsou
{{{
193 3 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
194 3 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
195 5 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
196 3 ttsou
[.] Pre computed vector checks:
197 3 ttsou
[..] Encoding: OK
198 3 ttsou
[..] Decoding base: 
199 4 ttsou
[..] Decoding SIMD: 
200 3 ttsou
[..] Code N 3
201 3 ttsou
[..] Code K 7
202 3 ttsou
OK
203 3 ttsou
[.] Random vector checks:
204 3 ttsou
[.] Testing baseline:
205 3 ttsou
[..] Encoding / Decoding 10000 cycles:
206 3 ttsou
[.] Elapsed time........................ 21.963257 secs
207 3 ttsou
[.] Rate................................ 0.203977 Mbps
208 3 ttsou
[.] Testing SIMD:
209 3 ttsou
[..] Encoding / Decoding 10000 cycles:
210 3 ttsou
[.] Elapsed time........................ 3.083282 secs
211 3 ttsou
[.] Rate................................ 1.452997 Mbps
212 3 ttsou
[.] Speedup............................. 7.123337
213 3 ttsou
}}}
214 3 ttsou
215 1 ttsou
== Authors ==
216 1 ttsou
217 1 ttsou
OsmoTRX is currently developed and maintained by Thomas Tsou. The original code is derived from the OpenBTS project, which was developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)