Project

General

Profile

OsmoTRX » History » Version 18

ttsou, 02/19/2016 10:47 PM

1 1 ttsou
= OsmoTRX =
2
3
OsmoTRX is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
4
 * TS 05.01 "Physical layer on the radio path"
5
 * TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
6
 * TS 05.04 "Modulation"
7
 * TS 05.10 "Radio subsystem synchronization"
8
9 6 ttsou
OsmoTRX is based on the OpenBTS transceiver, but setup to operate independently with the purpose of using with non-OpenBTS software and projects. Currently there are numerous features contained in OsmoTRX that extend the functionality of the OpenBTS transceiver. These features include enhanced support for embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves UmTRX. Most of these features will eventually be merged into mainline OpenBTS, but primary development will occur on OsmoTRX.
10
11
== Features ==
12
13 16 ttsou
'''Intel SSE Support'''
14 6 ttsou
* SSE3
15
* SSE4.1
16
17 17 ttsou
On Intel processors, OsmoTRX makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use. SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. For additional performance information, please see the benchmarks section. SSE usage is detected and configured automatically at build time.
18 6 ttsou
19 16 ttsou
'''ARM NEON Support'''
20 6 ttsou
* NEON
21
* NEON-VFPv4
22
23 17 ttsou
OsmoTRX runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions. Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). These platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4 respectively. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations. For additional performance information, please see the benchmarks section. NEON optimization must be used enabled at built time.
24 9 ttsou
25 16 ttsou
'''Dual Channel (UmTRX only)'''
26 6 ttsou
27 7 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
28
path of the dual channel device - currently only UmTRX - supports a different ARFCN. Each path operates independently a
29
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled.
30
31 16 ttsou
'''Dual Channel Diversity (UmTRX only)'''
32 7 ttsou
33 8 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. The limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path.
34 1 ttsou
35 16 ttsou
'''Low Phase Error Modulator'''
36 1 ttsou
37 16 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. On capable devices, the signal measures with very low phase error and passes industry spectrum mask requirements.
38 1 ttsou
39 16 ttsou
Phase Error (Ettus Research N200)
40 1 ttsou
41 16 ttsou
[[Image(http://tsou.cc/gsm/osmo-trx-phase75.gif)]]
42
43
Frequency Spectrum (Ettus Research N200)
44
45
[[Image(http://tsou.cc/gsm/osmo-trx-spectrum75.gif)]]
46
47 1 ttsou
== Hardware support ==
48
49 9 ttsou
Fairwaves
50
||UmTRX||
51
52 1 ttsou
Ettus Research
53
||USRP1||
54
||USRP2||
55
||B100||
56
||B110||
57
||B200||
58
||B210||
59
||N200||
60
||N210||
61
||E100||
62
||E110||
63
64
== Embedded Platform Support ==
65
66
OsmoTRX has been tested on the following embedded platforms.
67
68 18 ttsou
||'''Platform'''||'''SoC'''||'''Processor'''||'''SIMD/FPU'''||
69
||!ArndaleBoard||Samsung Exynos 5250||ARM Cortex-A15||NEON-VFPv4||
70
||!BeagleBoard-xM||Texas Instruments OMAP3||ARM Cortex-A8||NEON||
71
||Ettus E100||Texas Instruments OMAP3||ARM Cortex-A8||NEON||
72
||Shuttle PC||NA||Intel Atom D2550||SSE3||
73
||Raspberry Pi||Broadcom BCM2835||ARM11||VFP||
74 1 ttsou
75 18 ttsou
76
77 1 ttsou
== Mailing List ==
78
79 18 ttsou
For development purposes, OsmoTRX is discussed on both OpenBTS and OpenBSC mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively. Please direct questions to the list appropriate for the GSM stack being used.
80 1 ttsou
81 18 ttsou
Subscription information is available at [https://lists.sourceforge.net/lists/listinfo/openbts-discuss] and [http://lists.osmocom.org/mailman/listinfo/openbsc/].
82 1 ttsou
83 16 ttsou
== GPRS support ==
84
85 18 ttsou
OsmoTRX supports GPRS through OsmoBTS. For GPRS support with OpenBTS, please use the transceiver supplied with OpenBTS.
86
87 16 ttsou
== Source code ==
88 1 ttsou
89 16 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
90 1 ttsou
91
Public read-only access is available via
92
 git clone git://git.osmocom.org/osmo-trx
93 16 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
94
95 1 ttsou
== Configuration and Build ==
96
97 18 ttsou
The only package dependency is the Universal Hardware Driver (UHD), which is available from Ettus Research or Fairwaves depending on the device. Please note that the UHD implementation must match hardware (i.e. Ettus Research UHD for USRP devices and Fairwaves UHD with UmTRX). The one device that does not use the UHD driver is the USRP1, which is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
98 1 ttsou
99 18 ttsou
'''Intel Platforms (All)'''
100
101
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary.
102 1 ttsou
{{{
103
$ ./configure
104 18 ttsou
...
105
checking whether mmx is supported... yes
106
checking whether sse is supported... yes
107
checking whether sse2 is supported... yes
108
checking whether sse3 is supported... yes
109
checking whether ssse3 is supported... yes
110
checking whether sse4.1 is supported... yes
111
checking whether sse4.2 is supported... yes
112
...
113
}}}
114
115
'''ARM Platforms with NEON'''
116
117
Many popular ARM development boards fall under this category including !BeagleBoard, !PandaBoard, and Ettus E100 USRP. NEON support must be manually enabled.
118
{{{
119
$ ./configure --with-neon
120
}}}
121
122
'''ARM Platforms with NEON-VFPv4'''
123
124
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are !ArndaleBoard and ODROID-XU. NEON-VFPv4 support is manually enabled.
125
{{{
126
$ ./configure --with-neon-vfpv4
127
}}}
128
129
'''ARM Platforms without NEON'''
130
131
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running OsmoTRX. Running OsmoTRX on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
132
133
Coming soon.
134
135
'''Build and Install'''
136
137
After configuration, installation is simple.
138
139
{{{
140 16 ttsou
$ make
141
$ sudo make install
142
}}}
143
144
== Running ==
145 18 ttsou
146
OsmoTRX can be configured with a variety of options on the command line.
147 16 ttsou
148
{{{
149
$ osmo-trx -h
150
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
151
152
Options:
153
  -h    This text
154
  -a    UHD device args
155
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
156
  -i    IP address of GSM core
157
  -p    Base port number
158
  -d    Enable dual channel diversity receiver
159
  -x    Enable external 10 MHz reference
160
  -s    Samples-per-symbol (1 or 4)
161
  -c    Number of ARFCN channels (default=1)
162
}}}
163
164
{{{
165
$ osmo-trx -a "addr=192.168.10.2"
166
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
167
168
Config Settings
169
   Log Level............... INFO
170
   Device args............. addr=192.168.10.2
171
   TRX Base Port........... 5700
172
   TRX Address............. 127.0.0.1
173
   Channels................ 1
174
   Samples-per-Symbol...... 4
175
   External Reference...... Disabled
176
   Diversity............... Disabled
177
178
-- Opening a UmTRX device...
179
-- Current recv frame size: 1472 bytes
180
-- Current send frame size: 1472 bytes
181
-- Setting UmTRX 4 SPS
182
-- Transceiver active with 1 channel(s)
183
}}}
184
185 13 ttsou
== Benchmarks ==
186
187
Selected benchmark results are provided below. All tests run on a single core only.
188
189 17 ttsou
'''Intel Haswell (i7 4770K 3.5 GHz)'''
190 13 ttsou
191
{{{
192
--- Floating point to integer conversions
193
-- Testing 40000 iterations of 3120 values
194
- Measuring conversion time
195
- Elapsed time base...                  0.065508 secs
196
- Validating SIMD conversion results... PASS
197 10 ttsou
- Measuring conversion time
198
- Elapsed time SIMD ...                 0.011424 secs
199 1 ttsou
- Speedup...                            5.734244
200
}}}
201
202
{{{
203
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
204
[.] Input length  : ret = 165  exp = 165 -> OK
205
[.] Output length : ret = 448  exp = 448 -> OK
206
[.] Pre computed vector checks:
207
[..] Encoding: OK
208
[..] Decoding base: 
209
[..] Decoding SIMD: 
210
[..] Code N 3
211 3 ttsou
[..] Code K 7
212
OK
213
[.] Random vector checks:
214
[.] Testing baseline:
215
[..] Encoding / Decoding 10000 cycles:
216
[.] Elapsed time........................ 1.435066 secs
217
[.] Rate................................ 3.121808 Mbps
218
[.] Testing SIMD:
219
[..] Encoding / Decoding 10000 cycles:
220
[.] Elapsed time........................ 0.073524 secs
221
[.] Rate................................ 60.932485 Mbps
222
[.] Speedup............................. 19.518334
223 1 ttsou
}}}
224
225 17 ttsou
'''Intel Atom (D2500 1.86 GHz)'''
226 1 ttsou
{{{
227
--- Floating point to integer conversions
228
-- Testing 40000 iterations of 3120 values
229
- Measuring conversion time
230 17 ttsou
- Elapsed time base...                 1.147449 secs
231
- Validating SSE conversion results... PASS
232
- Measuring conversion time
233
- Elapsed time SSE ...                 0.347838 secs
234
- Quotient...                          3.298803
235
}}}
236
237
{{{
238
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
239
[.] Input length  : ret = 165  exp = 165 -> OK
240
[.] Output length : ret = 448  exp = 448 -> OK
241
[.] Pre computed vector checks:
242
[..] Encoding: OK
243
[..] Decoding base: 
244
[..] Decoding SIMD: 
245
[..] Code N 3
246
[..] Code K 7
247
OK
248
[.] Random vector checks:
249
[.] Testing baseline:
250
[..] Encoding / Decoding 10000 cycles:
251
[.] Elapsed time........................ 11.822688 secs
252
[.] Rate................................ 0.378932 Mbps
253
[.] Testing SIMD:
254
[..] Encoding / Decoding 10000 cycles:
255
[.] Elapsed time........................ 0.550423 secs
256
[.] Rate................................ 8.139195 Mbps
257
[.] Speedup............................. 21.479277
258
}}}
259
260
'''!ArndaleBoard (ARM Cortex-A15 1.7 GHz)'''
261
{{{
262
--- Floating point to integer conversions
263
-- Testing 40000 iterations of 3120 values
264
- Measuring conversion time
265
- Elapsed time base...                 0.384097 secs
266
- Validating SSE conversion results... PASS
267
- Measuring conversion time
268
- Elapsed time SSE ...                 0.100877 secs
269
- Quotient...                          3.807578
270
}}}
271
272
{{{
273
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
274
[.] Input length  : ret = 165  exp = 165 -> OK
275
[.] Output length : ret = 448  exp = 448 -> OK
276
[.] Pre computed vector checks:
277
[..] Encoding: OK
278
[..] Decoding base: 
279
[..] Decoding SIMD: 
280
[..] Code N 3
281
[..] Code K 7
282
OK
283
[.] Random vector checks:
284
[.] Testing baseline:
285
[..] Encoding / Decoding 10000 cycles:
286
[.] Elapsed time........................ 5.371288 secs
287
[.] Rate................................ 0.834064 Mbps
288
[.] Testing SIMD:
289
[..] Encoding / Decoding 10000 cycles:
290
[.] Elapsed time........................ 1.016621 secs
291
[.] Rate................................ 4.406755 Mbps
292
[.] Speedup............................. 5.283471
293
}}}
294
295
'''!BeagleBoard-xM (ARM Cortex-A8 800 MHz)'''
296
{{{
297
--- Floating point to integer conversions
298
-- Testing 40000 iterations of 3120 values
299
- Measuring conversion time
300 3 ttsou
- Elapsed time base...                  6.292542 secs
301
- Validating SIMD conversion results... PASS
302
- Measuring conversion time
303
- Elapsed time SIMD ...                 0.839081 secs
304
- Quotient...                           7.499326
305
}}}
306
307
{{{
308
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
309 5 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
310 3 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
311
[.] Pre computed vector checks:
312
[..] Encoding: OK
313 4 ttsou
[..] Decoding base: 
314 3 ttsou
[..] Decoding SIMD: 
315
[..] Code N 3
316
[..] Code K 7
317
OK
318
[.] Random vector checks:
319
[.] Testing baseline:
320
[..] Encoding / Decoding 10000 cycles:
321
[.] Elapsed time........................ 21.963257 secs
322
[.] Rate................................ 0.203977 Mbps
323
[.] Testing SIMD:
324 1 ttsou
[..] Encoding / Decoding 10000 cycles:
325 3 ttsou
[.] Elapsed time........................ 3.083282 secs
326
[.] Rate................................ 1.452997 Mbps
327
[.] Speedup............................. 7.123337
328
}}}
329
330 1 ttsou
== Authors ==
331
332 17 ttsou
OsmoTRX is currently developed and maintained by Thomas Tsou. The code is derived from the OpenBTS project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)