Project

General

Profile

OsmoTRX » History » Version 43

laforge, 02/21/2016 10:46 AM

1 41 sylvain
{{>toc}}
2 1 ttsou
3 41 sylvain
h1. [[OsmoTRX]]
4 1 ttsou
5 1 ttsou
6 41 sylvain
[[OsmoTRX]] is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
7 41 sylvain
* TS 05.01 "Physical layer on the radio path"
8 41 sylvain
* TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
9 41 sylvain
* TS 05.04 "Modulation"
10 41 sylvain
* TS 05.10 "Radio subsystem synchronization"
11 1 ttsou
12 41 sylvain
[[OsmoTRX]] is based on the transceiver code from the [[OpenBTS]] project, but setup to operate independently with the purpose of using with non-OpenBTS software and projects, while still maintaining backwards compatibility with [[OpenBTS]]. Currently there are numerous features contained in [[OsmoTRX]] that extend the functionality of the [[OpenBTS]] transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves [[UmTRX]].
13 41 sylvain
14 41 sylvain
15 41 sylvain
h2. Features
16 41 sylvain
17 41 sylvain
18 41 sylvain
*Intel SSE Support*
19 6 ttsou
* SSE3
20 6 ttsou
* SSE4.1
21 20 ttsou
22 41 sylvain
On Intel processors, [[OsmoTRX]] makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
23 1 ttsou
24 20 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
25 29 ttsou
26 41 sylvain
*ARM Support*
27 1 ttsou
* NEON
28 1 ttsou
* NEON-VFPv4
29 20 ttsou
30 41 sylvain
[[OsmoTRX]] runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
31 20 ttsou
32 1 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
33 1 ttsou
34 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
35 37 ttsou
36 41 sylvain
*Dual Channel (UmTRX and B210)*
37 7 ttsou
38 1 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
39 28 ttsou
path of the dual channel device supports a different ARFCN. Each path operates independently a
40 1 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
41 1 ttsou
42 41 sylvain
*Dual Channel Diversity (UmTRX, experimental)*
43 1 ttsou
44 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
45 16 ttsou
46 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
47 20 ttsou
48 41 sylvain
*Uplink Burst Detection*
49 39 ttsou
50 41 sylvain
[[OsmoTRX]] utilizes an updated receive burst detection algorithm that provides greater sensitivity and reliability than the original [[OpenBTS]] approach, which relied on energy detection for the initial stage of burst acquisition.
51 39 ttsou
52 1 ttsou
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
53 1 ttsou
54 1 ttsou
The current receiver code addressed those limitations for improved performance in a wider variety of environments.
55 1 ttsou
56 41 sylvain
*Low Phase Error Modulator*
57 16 ttsou
58 16 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
59 1 ttsou
60 41 sylvain
Theoretical details can be found in the report on "GMSK":http://tsou.cc/gsm/report_gmsk.pdf. Octave / Matlab code for "pulse generation":http://tsou.cc/gsm/laurent.m is also available.
61 1 ttsou
62 1 ttsou
This option can be enabled or disabled at run time from the command line.
63 28 ttsou
64 28 ttsou
Very Low Phase Error (Ettus Research N200)
65 16 ttsou
66 42 laforge
!http://tsou.cc/gsm/osmo-trx-phase75.gif!
67 1 ttsou
68 21 ttsou
Spectrum Mask (Ettus Research N200)
69 1 ttsou
70 42 laforge
!http://tsou.cc/gsm/osmo-trx-spectrum75.gif!
71 1 ttsou
72 1 ttsou
73 41 sylvain
h2. RF Hardware support
74 1 ttsou
75 41 sylvain
76 41 sylvain
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the [[UmTRX]] from Fairwaves.
77 41 sylvain
78 41 sylvain
||*Fairwaves*||*Notes*||
79 20 ttsou
||UmTRX||Dual channel||
80 20 ttsou
81 20 ttsou
All Ettus Research devices are supported.
82 1 ttsou
83 41 sylvain
||*Ettus Research*||*Notes*||
84 1 ttsou
||USRP1||Requires legacy libusrp driver and clocking modification||
85 1 ttsou
||USRP2||10 MHz external reference required||
86 1 ttsou
||B100||
87 1 ttsou
||B110||
88 1 ttsou
||B200||GPSDO or 10 MHz external reference recommended||
89 1 ttsou
||B210||Dual channel, 10 MHz external reference recommended||
90 1 ttsou
||N200||
91 20 ttsou
||N210||
92 1 ttsou
||E100||
93 1 ttsou
||E110||
94 1 ttsou
95 41 sylvain
h2. Embedded Platform Support
96 1 ttsou
97 41 sylvain
98 41 sylvain
[[OsmoTRX]] has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
99 41 sylvain
100 1 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
101 1 ttsou
102 43 laforge
|_.Platform|_.SoC*|_.Processor|_.SIMD/FPU|_.Testing Notes|
103 43 laforge
|ArndaleBoard|Samsung Exynos 5250|ARM Cortex-A15|NEON-VFPv4|7 TCH|
104 43 laforge
|BeagleBoard-xM|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
105 43 laforge
|Ettus E100|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
106 43 laforge
|Raspberry Pi|Broadcom BCM2835|ARM11|VFP|2 TCH, remote [[osmobts:]] stack|
107 43 laforge
|Shuttle PC|NA|Intel Atom D2550|SSE3|Dual channel, 15 TCH|
108 1 ttsou
109 1 ttsou
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
110 19 ttsou
111 41 sylvain
h2. Mailing List
112 22 ttsou
113 41 sylvain
114 41 sylvain
For development purposes, [[OsmoTRX]] is discussed on both [[OpenBTS]] and [[OpenBSC]] mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
115 41 sylvain
116 1 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
117 1 ttsou
118 41 sylvain
Subscription information is available at "and [http://lists.osmocom.org/mailman/listinfo/openbsc/":https://lists.sourceforge.net/lists/listinfo/openbts-discuss].
119 1 ttsou
120 1 ttsou
121 41 sylvain
h2. GPRS support
122 1 ttsou
123 1 ttsou
124 41 sylvain
[[OsmoTRX]] supports GPRS through [[OsmoBTS]].
125 1 ttsou
126 41 sylvain
For GPRS support with [[OpenBTS]], please use the transceiver supplied with [[OpenBTS]].
127 41 sylvain
128 41 sylvain
129 41 sylvain
h2. Source code
130 41 sylvain
131 41 sylvain
132 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
133 18 ttsou
134 18 ttsou
Public read-only access is available via
135 41 sylvain
<pre>
136 19 ttsou
$ git clone git://git.osmocom.org/osmo-trx
137 41 sylvain
</pre>
138 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
139 1 ttsou
140 1 ttsou
141 41 sylvain
h2. Configuration and Build
142 1 ttsou
143 41 sylvain
144 41 sylvain
The only package dependency is the Universal Hardware Driver (UHD), which is available from Ettus Research or Fairwaves depending on the device. Please note that the UHD implementation must match hardware (i.e. Ettus Research UHD for USRP devices and Fairwaves UHD with [[UmTRX]]). The one device that does not use the UHD driver is the USRP1, which is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
145 41 sylvain
146 36 9600
First, run autoreconf to remake the build system files.
147 41 sylvain
<pre>
148 1 ttsou
$ autoreconf -i
149 18 ttsou
...
150 41 sylvain
</pre>
151 18 ttsou
152 41 sylvain
*Intel Platforms (All)*
153 18 ttsou
154 1 ttsou
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
155 41 sylvain
<pre>
156 18 ttsou
$ ./configure
157 1 ttsou
...
158 1 ttsou
checking whether mmx is supported... yes
159 19 ttsou
checking whether sse is supported... yes
160 18 ttsou
checking whether sse2 is supported... yes
161 18 ttsou
checking whether sse3 is supported... yes
162 18 ttsou
checking whether ssse3 is supported... yes
163 18 ttsou
checking whether sse4.1 is supported... yes
164 18 ttsou
checking whether sse4.2 is supported... yes
165 18 ttsou
...
166 41 sylvain
</pre>
167 18 ttsou
168 41 sylvain
*ARM Platforms with NEON*
169 18 ttsou
170 41 sylvain
Many popular ARM development boards fall under this category including BeagleBoard, PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
171 41 sylvain
<pre>
172 24 ttsou
$ ./configure --with-neon
173 41 sylvain
</pre>
174 1 ttsou
175 41 sylvain
*ARM Platforms with NEON-VFPv4*
176 1 ttsou
177 41 sylvain
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
178 41 sylvain
<pre>
179 1 ttsou
$ ./configure --with-neon-vfpv4
180 41 sylvain
</pre>
181 1 ttsou
182 41 sylvain
*ARM Platforms without NEON*
183 1 ttsou
184 41 sylvain
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running [[OsmoTRX]]. Running [[OsmoTRX]] on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
185 1 ttsou
186 1 ttsou
Coming soon...
187 1 ttsou
188 41 sylvain
*Build and Install*
189 1 ttsou
190 16 ttsou
After configuration, installation is simple.
191 16 ttsou
192 41 sylvain
<pre>
193 16 ttsou
$ make
194 16 ttsou
$ sudo make install
195 41 sylvain
</pre>
196 16 ttsou
197 16 ttsou
198 41 sylvain
h2. Running
199 16 ttsou
200 41 sylvain
201 41 sylvain
[[OsmoTRX]] can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
202 41 sylvain
203 41 sylvain
<pre>
204 16 ttsou
$ osmo-trx -h
205 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
206 16 ttsou
207 16 ttsou
Options:
208 16 ttsou
  -h    This text
209 1 ttsou
  -a    UHD device args
210 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
211 16 ttsou
  -i    IP address of GSM core
212 1 ttsou
  -p    Base port number
213 1 ttsou
  -d    Enable dual channel diversity receiver
214 16 ttsou
  -x    Enable external 10 MHz reference
215 16 ttsou
  -s    Samples-per-symbol (1 or 4)
216 38 ttsou
  -c    Number of ARFCN channels (default=1)
217 38 ttsou
  -f    Enable C0 filler table
218 16 ttsou
  -o    Set baseband frequency offset (default=auto)
219 41 sylvain
</pre>
220 16 ttsou
221 41 sylvain
<pre>
222 1 ttsou
$ osmo-trx -a "addr=192.168.10.2"
223 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
224 16 ttsou
225 16 ttsou
Config Settings
226 16 ttsou
   Log Level............... INFO
227 1 ttsou
   Device args............. addr=192.168.10.2
228 16 ttsou
   TRX Base Port........... 5700
229 1 ttsou
   TRX Address............. 127.0.0.1
230 16 ttsou
   Channels................ 1
231 16 ttsou
   Samples-per-Symbol...... 4
232 16 ttsou
   External Reference...... Disabled
233 16 ttsou
   Diversity............... Disabled
234 16 ttsou
235 41 sylvain
-- Opening a [[UmTRX]] device...
236 13 ttsou
-- Current recv frame size: 1472 bytes
237 38 ttsou
-- Current send frame size: 1472 bytes
238 41 sylvain
-- Setting [[UmTRX]] 4 SPS
239 38 ttsou
-- Transceiver active with 1 channel(s)
240 41 sylvain
</pre>
241 38 ttsou
242 1 ttsou
243 41 sylvain
h2. [[OsmoTRX]] with [[OpenBTS]]
244 38 ttsou
245 38 ttsou
246 41 sylvain
[[OsmoTRX]] is fully compatible with [[OpenBTS]] for voice and SMS services. Due to differences in handing of GPRS, [[OsmoTRX]] does not support GPRS when used with [[OpenBTS]], however, GPRS with the Osmocom stack is supported.
247 41 sylvain
248 41 sylvain
For use with [[OpenBTS]], enable the filler table option "Enable C0 filler table", which enables [[OpenBTS]] style idle bursts and retransmissions.
249 41 sylvain
250 41 sylvain
<pre>
251 1 ttsou
$ osmo-trx -f
252 41 sylvain
</pre>
253 17 ttsou
254 41 sylvain
The [[OsmoTRX]] transceiver should be started before running [[OpenBTS]]. No symbolic link to './transceiver' should exist in the [[OpenBTS]] directory. This prevents [[OpenBTS]] from starting its own transceiver instance.
255 35 ttsou
256 1 ttsou
257 41 sylvain
h2. Benchmarks
258 1 ttsou
259 35 ttsou
260 41 sylvain
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in [[OsmoTRX]], but one stop higher in the Layer 1 stack - either in [[OsmoBTS]] or [[OpenBTS]] core.
261 35 ttsou
262 41 sylvain
*Repository*
263 41 sylvain
264 41 sylvain
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as [[OsmoTRX]]. The test code may be merged into [[OsmoTRX]] at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as [[OsmoTRX]].
265 41 sylvain
266 41 sylvain
<pre>
267 35 ttsou
$ git clone https://github.com/ttsou/trx-bench.git
268 35 ttsou
269 35 ttsou
$ cd trx-bench
270 35 ttsou
$ autoreconf -i
271 35 ttsou
$ ./configure [--with-neon] [--with-neon-vfp4]
272 1 ttsou
$ make
273 1 ttsou
$ src/conv_test
274 35 ttsou
$ src/convert_test
275 35 ttsou
$ src/convolve_test
276 41 sylvain
</pre>
277 35 ttsou
278 35 ttsou
The convolutional decoding test includes command options including experimental support for benchmarking with multiple threads.
279 35 ttsou
280 41 sylvain
<pre>
281 35 ttsou
$ ./conv_test -h
282 35 ttsou
Options:
283 35 ttsou
  -h    This text
284 1 ttsou
  -i    Number of iterations
285 1 ttsou
  -j    Number of threads for benchmark (1 to 32)
286 13 ttsou
  -b    Run benchmark tests
287 13 ttsou
  -a    Run validity checks
288 13 ttsou
  -e    Run bit-error-rate tests
289 41 sylvain
</pre>
290 10 ttsou
291 1 ttsou
Selected benchmark results are provided below. All tests are run on a single core only.
292 1 ttsou
293 41 sylvain
*Intel Haswell (i7 4770K 3.5 GHz)*
294 1 ttsou
295 41 sylvain
<pre>
296 1 ttsou
--- Floating point to integer conversions
297 1 ttsou
-- Testing 40000 iterations of 3120 values
298 1 ttsou
- Measuring conversion time
299 1 ttsou
- Elapsed time base...                  0.065508 secs
300 1 ttsou
- Validating SIMD conversion results... PASS
301 3 ttsou
- Measuring conversion time
302 3 ttsou
- Elapsed time SIMD ...                 0.011424 secs
303 3 ttsou
- Speedup...                            5.734244
304 41 sylvain
</pre>
305 1 ttsou
306 41 sylvain
<pre>
307 3 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
308 3 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
309 3 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
310 3 ttsou
[.] Pre computed vector checks:
311 3 ttsou
[..] Encoding: OK
312 3 ttsou
[..] Decoding base: 
313 3 ttsou
[..] Decoding SIMD: 
314 1 ttsou
[..] Code N 3
315 1 ttsou
[..] Code K 7
316 1 ttsou
OK
317 1 ttsou
[.] Random vector checks:
318 1 ttsou
[.] Testing baseline:
319 17 ttsou
[..] Encoding / Decoding 10000 cycles:
320 17 ttsou
[.] Elapsed time........................ 1.435066 secs
321 17 ttsou
[.] Rate................................ 3.121808 Mbps
322 17 ttsou
[.] Testing SIMD:
323 17 ttsou
[..] Encoding / Decoding 10000 cycles:
324 17 ttsou
[.] Elapsed time........................ 0.073524 secs
325 17 ttsou
[.] Rate................................ 60.932485 Mbps
326 17 ttsou
[.] Speedup............................. 19.518334
327 41 sylvain
</pre>
328 17 ttsou
329 41 sylvain
*Intel Atom (D2500 1.86 GHz)*
330 41 sylvain
<pre>
331 17 ttsou
--- Floating point to integer conversions
332 17 ttsou
-- Testing 40000 iterations of 3120 values
333 17 ttsou
- Measuring conversion time
334 17 ttsou
- Elapsed time base...                 1.147449 secs
335 1 ttsou
- Validating SSE conversion results... PASS
336 17 ttsou
- Measuring conversion time
337 1 ttsou
- Elapsed time SSE ...                 0.347838 secs
338 1 ttsou
- Quotient...                          3.298803
339 41 sylvain
</pre>
340 17 ttsou
341 41 sylvain
<pre>
342 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
343 1 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
344 1 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
345 1 ttsou
[.] Pre computed vector checks:
346 17 ttsou
[..] Encoding: OK
347 17 ttsou
[..] Decoding base: 
348 17 ttsou
[..] Decoding SIMD: 
349 17 ttsou
[..] Code N 3
350 17 ttsou
[..] Code K 7
351 17 ttsou
OK
352 17 ttsou
[.] Random vector checks:
353 19 ttsou
[.] Testing baseline:
354 19 ttsou
[..] Encoding / Decoding 10000 cycles:
355 19 ttsou
[.] Elapsed time........................ 11.822688 secs
356 17 ttsou
[.] Rate................................ 0.378932 Mbps
357 17 ttsou
[.] Testing SIMD:
358 17 ttsou
[..] Encoding / Decoding 10000 cycles:
359 17 ttsou
[.] Elapsed time........................ 0.550423 secs
360 17 ttsou
[.] Rate................................ 8.139195 Mbps
361 17 ttsou
[.] Speedup............................. 21.479277
362 41 sylvain
</pre>
363 17 ttsou
364 41 sylvain
*!ArndaleBoard (ARM Cortex-A15 1.7 GHz)*
365 17 ttsou
366 17 ttsou
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
367 17 ttsou
368 41 sylvain
<pre>
369 17 ttsou
--- Floating point to integer conversions
370 17 ttsou
-- Testing 40000 iterations of 3120 values
371 17 ttsou
- Measuring conversion time
372 17 ttsou
- Elapsed time base...                 0.384097 secs
373 17 ttsou
- Validating SSE conversion results... PASS
374 17 ttsou
- Measuring conversion time
375 17 ttsou
- Elapsed time SSE ...                 0.100877 secs
376 17 ttsou
- Quotient...                          3.807578
377 41 sylvain
</pre>
378 17 ttsou
379 41 sylvain
<pre>
380 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
381 17 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
382 17 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
383 17 ttsou
[.] Pre computed vector checks:
384 17 ttsou
[..] Encoding: OK
385 17 ttsou
[..] Decoding base: 
386 17 ttsou
[..] Decoding SIMD: 
387 17 ttsou
[..] Code N 3
388 17 ttsou
[..] Code K 7
389 17 ttsou
OK
390 17 ttsou
[.] Random vector checks:
391 17 ttsou
[.] Testing baseline:
392 17 ttsou
[..] Encoding / Decoding 10000 cycles:
393 17 ttsou
[.] Elapsed time........................ 5.371288 secs
394 17 ttsou
[.] Rate................................ 0.834064 Mbps
395 3 ttsou
[.] Testing SIMD:
396 3 ttsou
[..] Encoding / Decoding 10000 cycles:
397 3 ttsou
[.] Elapsed time........................ 1.016621 secs
398 3 ttsou
[.] Rate................................ 4.406755 Mbps
399 3 ttsou
[.] Speedup............................. 5.283471
400 41 sylvain
</pre>
401 3 ttsou
402 41 sylvain
*!BeagleBoard-xM (ARM Cortex-A8 800 MHz)*
403 41 sylvain
<pre>
404 5 ttsou
--- Floating point to integer conversions
405 3 ttsou
-- Testing 40000 iterations of 3120 values
406 3 ttsou
- Measuring conversion time
407 3 ttsou
- Elapsed time base...                  6.292542 secs
408 4 ttsou
- Validating SIMD conversion results... PASS
409 3 ttsou
- Measuring conversion time
410 3 ttsou
- Elapsed time SIMD ...                 0.839081 secs
411 3 ttsou
- Quotient...                           7.499326
412 41 sylvain
</pre>
413 1 ttsou
414 41 sylvain
<pre>
415 31 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
416 31 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
417 31 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
418 31 ttsou
[.] Pre computed vector checks:
419 31 ttsou
[..] Encoding: OK
420 31 ttsou
[..] Decoding base: 
421 31 ttsou
[..] Decoding SIMD: 
422 31 ttsou
[..] Code N 3
423 31 ttsou
[..] Code K 7
424 1 ttsou
OK
425 32 ttsou
[.] Random vector checks:
426 32 ttsou
[.] Testing baseline:
427 32 ttsou
[..] Encoding / Decoding 10000 cycles:
428 32 ttsou
[.] Elapsed time........................ 21.963257 secs
429 32 ttsou
[.] Rate................................ 0.203977 Mbps
430 32 ttsou
[.] Testing SIMD:
431 32 ttsou
[..] Encoding / Decoding 10000 cycles:
432 32 ttsou
[.] Elapsed time........................ 3.083282 secs
433 32 ttsou
[.] Rate................................ 1.452997 Mbps
434 32 ttsou
[.] Speedup............................. 7.123337
435 41 sylvain
</pre>
436 32 ttsou
437 32 ttsou
438 41 sylvain
*Full Results*
439 32 ttsou
440 41 sylvain
"[http://tsou.cc/gsm/shuttle.txt":http://tsou.cc/gsm/haswell.txt]
441 31 ttsou
442 41 sylvain
"[http://tsou.cc/gsm/beagle.txt":http://tsou.cc/gsm/arndale.txt]
443 1 ttsou
444 30 ttsou
445 1 ttsou
446 41 sylvain
h2. Authors
447 1 ttsou
448 1 ttsou
449 41 sylvain
[[OsmoTRX]] is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the [[OpenBTS]] project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)