Project

General

Profile

OsmoTRX » History » Version 47

laforge, 04/16/2016 12:48 PM

1 41 sylvain
{{>toc}}
2 1 ttsou
3 41 sylvain
h1. [[OsmoTRX]]
4 1 ttsou
5 1 ttsou
6 41 sylvain
[[OsmoTRX]] is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
7 41 sylvain
* TS 05.01 "Physical layer on the radio path"
8 41 sylvain
* TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
9 41 sylvain
* TS 05.04 "Modulation"
10 41 sylvain
* TS 05.10 "Radio subsystem synchronization"
11 1 ttsou
12 45 laforge
[[OsmoTRX]] is based on the transceiver code from the [[OpenBTS]] project, but setup to operate independently with the purpose of using with non-OpenBTS software and projects, while still maintaining backwards compatibility with [[OpenBTS]]. Currently there are numerous features contained in [[OsmoTRX]] that extend the functionality of the [[OpenBTS]] transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves [[umtrx:]].
13 41 sylvain
14 46 laforge
h2. OsmoTRX in the Osmocom GSM architecture
15 46 laforge
16 46 laforge
{{graphviz_link()
17 46 laforge
digraph G {
18 46 laforge
    rankdir = LR;
19 46 laforge
    SDR -> OsmoTRX [label="Raw Samples"];
20 46 laforge
    OsmoTRX -> OsmoBTS [label="bursts over UDP"];
21 46 laforge
    OsmoBTS -> OsmoNITB [label="Abis/IP"];
22 46 laforge
    OsmoBTS -> OsmoPCU [label="pcu_sock"];
23 46 laforge
    OsmoPCU -> OsmoSGSN [label="Gb/IP"];
24 46 laforge
    OsmoTRX [color=red];
25 46 laforge
}
26 46 laforge
}}
27 41 sylvain
28 41 sylvain
h2. Features
29 41 sylvain
30 41 sylvain
31 41 sylvain
*Intel SSE Support*
32 6 ttsou
* SSE3
33 6 ttsou
* SSE4.1
34 20 ttsou
35 41 sylvain
On Intel processors, [[OsmoTRX]] makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
36 1 ttsou
37 20 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
38 29 ttsou
39 41 sylvain
*ARM Support*
40 1 ttsou
* NEON
41 1 ttsou
* NEON-VFPv4
42 20 ttsou
43 41 sylvain
[[OsmoTRX]] runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
44 20 ttsou
45 1 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
46 1 ttsou
47 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
48 37 ttsou
49 41 sylvain
*Dual Channel (UmTRX and B210)*
50 7 ttsou
51 1 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
52 28 ttsou
path of the dual channel device supports a different ARFCN. Each path operates independently a
53 1 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
54 1 ttsou
55 41 sylvain
*Dual Channel Diversity (UmTRX, experimental)*
56 1 ttsou
57 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
58 16 ttsou
59 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
60 20 ttsou
61 41 sylvain
*Uplink Burst Detection*
62 39 ttsou
63 41 sylvain
[[OsmoTRX]] utilizes an updated receive burst detection algorithm that provides greater sensitivity and reliability than the original [[OpenBTS]] approach, which relied on energy detection for the initial stage of burst acquisition.
64 39 ttsou
65 1 ttsou
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
66 1 ttsou
67 1 ttsou
The current receiver code addressed those limitations for improved performance in a wider variety of environments.
68 1 ttsou
69 41 sylvain
*Low Phase Error Modulator*
70 16 ttsou
71 16 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
72 1 ttsou
73 41 sylvain
Theoretical details can be found in the report on "GMSK":http://tsou.cc/gsm/report_gmsk.pdf. Octave / Matlab code for "pulse generation":http://tsou.cc/gsm/laurent.m is also available.
74 1 ttsou
75 1 ttsou
This option can be enabled or disabled at run time from the command line.
76 28 ttsou
77 28 ttsou
Very Low Phase Error (Ettus Research N200)
78 16 ttsou
79 42 laforge
!http://tsou.cc/gsm/osmo-trx-phase75.gif!
80 1 ttsou
81 21 ttsou
Spectrum Mask (Ettus Research N200)
82 1 ttsou
83 42 laforge
!http://tsou.cc/gsm/osmo-trx-spectrum75.gif!
84 1 ttsou
85 1 ttsou
86 41 sylvain
h2. RF Hardware support
87 1 ttsou
88 41 sylvain
89 41 sylvain
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the [[UmTRX]] from Fairwaves.
90 41 sylvain
91 41 sylvain
||*Fairwaves*||*Notes*||
92 20 ttsou
||UmTRX||Dual channel||
93 20 ttsou
94 20 ttsou
All Ettus Research devices are supported.
95 1 ttsou
96 41 sylvain
||*Ettus Research*||*Notes*||
97 1 ttsou
||USRP1||Requires legacy libusrp driver and clocking modification||
98 1 ttsou
||USRP2||10 MHz external reference required||
99 1 ttsou
||B100||
100 1 ttsou
||B110||
101 1 ttsou
||B200||GPSDO or 10 MHz external reference recommended||
102 1 ttsou
||B210||Dual channel, 10 MHz external reference recommended||
103 1 ttsou
||N200||
104 20 ttsou
||N210||
105 1 ttsou
||E100||
106 1 ttsou
||E110||
107 1 ttsou
108 41 sylvain
h2. Embedded Platform Support
109 1 ttsou
110 41 sylvain
111 41 sylvain
[[OsmoTRX]] has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
112 41 sylvain
113 1 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
114 1 ttsou
115 43 laforge
|_.Platform|_.SoC*|_.Processor|_.SIMD/FPU|_.Testing Notes|
116 43 laforge
|ArndaleBoard|Samsung Exynos 5250|ARM Cortex-A15|NEON-VFPv4|7 TCH|
117 43 laforge
|BeagleBoard-xM|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
118 43 laforge
|Ettus E100|Texas Instruments OMAP3|ARM Cortex-A8|NEON|7 TCH, remote [[osmobts:]] stack|
119 43 laforge
|Raspberry Pi|Broadcom BCM2835|ARM11|VFP|2 TCH, remote [[osmobts:]] stack|
120 43 laforge
|Shuttle PC|NA|Intel Atom D2550|SSE3|Dual channel, 15 TCH|
121 1 ttsou
122 1 ttsou
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
123 19 ttsou
124 41 sylvain
h2. Mailing List
125 22 ttsou
126 41 sylvain
127 47 laforge
For development purposes, [[OsmoTRX]] is discussed on both [[OpenBTS]] and [[OpenBSC:]] mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
128 41 sylvain
129 1 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
130 41 sylvain
131 47 laforge
Subscription information is available at "and [http://lists.osmocom.org/mailman/listinfo/openbsc/":https://lists.sourceforge.net/lists/listinfo/openbts-discuss].  Please make sure to read our [[cellular-infrastructure:MailingListRules]] before posting.
132 1 ttsou
133 41 sylvain
h2. GPRS support
134 1 ttsou
135 1 ttsou
136 44 laforge
[[OsmoTRX]] supports GPRS through [[osmobts:]].
137 1 ttsou
138 41 sylvain
For GPRS support with [[OpenBTS]], please use the transceiver supplied with [[OpenBTS]].
139 41 sylvain
140 41 sylvain
141 41 sylvain
h2. Source code
142 41 sylvain
143 41 sylvain
144 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
145 18 ttsou
146 18 ttsou
Public read-only access is available via
147 41 sylvain
<pre>
148 19 ttsou
$ git clone git://git.osmocom.org/osmo-trx
149 41 sylvain
</pre>
150 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
151 1 ttsou
152 1 ttsou
153 41 sylvain
h2. Configuration and Build
154 1 ttsou
155 41 sylvain
156 41 sylvain
The only package dependency is the Universal Hardware Driver (UHD), which is available from Ettus Research or Fairwaves depending on the device. Please note that the UHD implementation must match hardware (i.e. Ettus Research UHD for USRP devices and Fairwaves UHD with [[UmTRX]]). The one device that does not use the UHD driver is the USRP1, which is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
157 41 sylvain
158 36 9600
First, run autoreconf to remake the build system files.
159 41 sylvain
<pre>
160 1 ttsou
$ autoreconf -i
161 18 ttsou
...
162 41 sylvain
</pre>
163 18 ttsou
164 41 sylvain
*Intel Platforms (All)*
165 18 ttsou
166 1 ttsou
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
167 41 sylvain
<pre>
168 18 ttsou
$ ./configure
169 1 ttsou
...
170 1 ttsou
checking whether mmx is supported... yes
171 19 ttsou
checking whether sse is supported... yes
172 18 ttsou
checking whether sse2 is supported... yes
173 18 ttsou
checking whether sse3 is supported... yes
174 18 ttsou
checking whether ssse3 is supported... yes
175 18 ttsou
checking whether sse4.1 is supported... yes
176 18 ttsou
checking whether sse4.2 is supported... yes
177 18 ttsou
...
178 41 sylvain
</pre>
179 18 ttsou
180 41 sylvain
*ARM Platforms with NEON*
181 18 ttsou
182 41 sylvain
Many popular ARM development boards fall under this category including BeagleBoard, PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
183 41 sylvain
<pre>
184 24 ttsou
$ ./configure --with-neon
185 41 sylvain
</pre>
186 1 ttsou
187 41 sylvain
*ARM Platforms with NEON-VFPv4*
188 1 ttsou
189 41 sylvain
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
190 41 sylvain
<pre>
191 1 ttsou
$ ./configure --with-neon-vfpv4
192 41 sylvain
</pre>
193 1 ttsou
194 41 sylvain
*ARM Platforms without NEON*
195 1 ttsou
196 41 sylvain
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running [[OsmoTRX]]. Running [[OsmoTRX]] on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
197 1 ttsou
198 1 ttsou
Coming soon...
199 1 ttsou
200 41 sylvain
*Build and Install*
201 1 ttsou
202 16 ttsou
After configuration, installation is simple.
203 16 ttsou
204 41 sylvain
<pre>
205 16 ttsou
$ make
206 16 ttsou
$ sudo make install
207 41 sylvain
</pre>
208 16 ttsou
209 16 ttsou
210 41 sylvain
h2. Running
211 16 ttsou
212 41 sylvain
213 41 sylvain
[[OsmoTRX]] can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
214 41 sylvain
215 41 sylvain
<pre>
216 16 ttsou
$ osmo-trx -h
217 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
218 16 ttsou
219 16 ttsou
Options:
220 16 ttsou
  -h    This text
221 1 ttsou
  -a    UHD device args
222 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
223 16 ttsou
  -i    IP address of GSM core
224 1 ttsou
  -p    Base port number
225 1 ttsou
  -d    Enable dual channel diversity receiver
226 16 ttsou
  -x    Enable external 10 MHz reference
227 16 ttsou
  -s    Samples-per-symbol (1 or 4)
228 38 ttsou
  -c    Number of ARFCN channels (default=1)
229 38 ttsou
  -f    Enable C0 filler table
230 16 ttsou
  -o    Set baseband frequency offset (default=auto)
231 41 sylvain
</pre>
232 16 ttsou
233 41 sylvain
<pre>
234 1 ttsou
$ osmo-trx -a "addr=192.168.10.2"
235 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
236 16 ttsou
237 16 ttsou
Config Settings
238 16 ttsou
   Log Level............... INFO
239 1 ttsou
   Device args............. addr=192.168.10.2
240 16 ttsou
   TRX Base Port........... 5700
241 1 ttsou
   TRX Address............. 127.0.0.1
242 16 ttsou
   Channels................ 1
243 16 ttsou
   Samples-per-Symbol...... 4
244 16 ttsou
   External Reference...... Disabled
245 16 ttsou
   Diversity............... Disabled
246 16 ttsou
247 41 sylvain
-- Opening a [[UmTRX]] device...
248 13 ttsou
-- Current recv frame size: 1472 bytes
249 38 ttsou
-- Current send frame size: 1472 bytes
250 41 sylvain
-- Setting [[UmTRX]] 4 SPS
251 38 ttsou
-- Transceiver active with 1 channel(s)
252 41 sylvain
</pre>
253 38 ttsou
254 1 ttsou
255 41 sylvain
h2. [[OsmoTRX]] with [[OpenBTS]]
256 38 ttsou
257 38 ttsou
258 41 sylvain
[[OsmoTRX]] is fully compatible with [[OpenBTS]] for voice and SMS services. Due to differences in handing of GPRS, [[OsmoTRX]] does not support GPRS when used with [[OpenBTS]], however, GPRS with the Osmocom stack is supported.
259 41 sylvain
260 41 sylvain
For use with [[OpenBTS]], enable the filler table option "Enable C0 filler table", which enables [[OpenBTS]] style idle bursts and retransmissions.
261 41 sylvain
262 41 sylvain
<pre>
263 1 ttsou
$ osmo-trx -f
264 41 sylvain
</pre>
265 17 ttsou
266 41 sylvain
The [[OsmoTRX]] transceiver should be started before running [[OpenBTS]]. No symbolic link to './transceiver' should exist in the [[OpenBTS]] directory. This prevents [[OpenBTS]] from starting its own transceiver instance.
267 35 ttsou
268 1 ttsou
269 41 sylvain
h2. Benchmarks
270 1 ttsou
271 35 ttsou
272 44 laforge
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in [[OsmoTRX]], but one stop higher in the Layer 1 stack - either in [[osmobts:]] or [[OpenBTS]] core.
273 35 ttsou
274 41 sylvain
*Repository*
275 41 sylvain
276 41 sylvain
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as [[OsmoTRX]]. The test code may be merged into [[OsmoTRX]] at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as [[OsmoTRX]].
277 41 sylvain
278 41 sylvain
<pre>
279 35 ttsou
$ git clone https://github.com/ttsou/trx-bench.git
280 35 ttsou
281 35 ttsou
$ cd trx-bench
282 35 ttsou
$ autoreconf -i
283 35 ttsou
$ ./configure [--with-neon] [--with-neon-vfp4]
284 1 ttsou
$ make
285 1 ttsou
$ src/conv_test
286 35 ttsou
$ src/convert_test
287 35 ttsou
$ src/convolve_test
288 41 sylvain
</pre>
289 35 ttsou
290 35 ttsou
The convolutional decoding test includes command options including experimental support for benchmarking with multiple threads.
291 35 ttsou
292 41 sylvain
<pre>
293 35 ttsou
$ ./conv_test -h
294 35 ttsou
Options:
295 35 ttsou
  -h    This text
296 1 ttsou
  -i    Number of iterations
297 1 ttsou
  -j    Number of threads for benchmark (1 to 32)
298 13 ttsou
  -b    Run benchmark tests
299 13 ttsou
  -a    Run validity checks
300 13 ttsou
  -e    Run bit-error-rate tests
301 41 sylvain
</pre>
302 10 ttsou
303 1 ttsou
Selected benchmark results are provided below. All tests are run on a single core only.
304 1 ttsou
305 41 sylvain
*Intel Haswell (i7 4770K 3.5 GHz)*
306 1 ttsou
307 41 sylvain
<pre>
308 1 ttsou
--- Floating point to integer conversions
309 1 ttsou
-- Testing 40000 iterations of 3120 values
310 1 ttsou
- Measuring conversion time
311 1 ttsou
- Elapsed time base...                  0.065508 secs
312 1 ttsou
- Validating SIMD conversion results... PASS
313 3 ttsou
- Measuring conversion time
314 3 ttsou
- Elapsed time SIMD ...                 0.011424 secs
315 3 ttsou
- Speedup...                            5.734244
316 41 sylvain
</pre>
317 1 ttsou
318 41 sylvain
<pre>
319 3 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
320 3 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
321 3 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
322 3 ttsou
[.] Pre computed vector checks:
323 3 ttsou
[..] Encoding: OK
324 3 ttsou
[..] Decoding base: 
325 3 ttsou
[..] Decoding SIMD: 
326 1 ttsou
[..] Code N 3
327 1 ttsou
[..] Code K 7
328 1 ttsou
OK
329 1 ttsou
[.] Random vector checks:
330 1 ttsou
[.] Testing baseline:
331 17 ttsou
[..] Encoding / Decoding 10000 cycles:
332 17 ttsou
[.] Elapsed time........................ 1.435066 secs
333 17 ttsou
[.] Rate................................ 3.121808 Mbps
334 17 ttsou
[.] Testing SIMD:
335 17 ttsou
[..] Encoding / Decoding 10000 cycles:
336 17 ttsou
[.] Elapsed time........................ 0.073524 secs
337 17 ttsou
[.] Rate................................ 60.932485 Mbps
338 17 ttsou
[.] Speedup............................. 19.518334
339 41 sylvain
</pre>
340 17 ttsou
341 41 sylvain
*Intel Atom (D2500 1.86 GHz)*
342 41 sylvain
<pre>
343 17 ttsou
--- Floating point to integer conversions
344 17 ttsou
-- Testing 40000 iterations of 3120 values
345 17 ttsou
- Measuring conversion time
346 17 ttsou
- Elapsed time base...                 1.147449 secs
347 1 ttsou
- Validating SSE conversion results... PASS
348 17 ttsou
- Measuring conversion time
349 1 ttsou
- Elapsed time SSE ...                 0.347838 secs
350 1 ttsou
- Quotient...                          3.298803
351 41 sylvain
</pre>
352 17 ttsou
353 41 sylvain
<pre>
354 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
355 1 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
356 1 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
357 1 ttsou
[.] Pre computed vector checks:
358 17 ttsou
[..] Encoding: OK
359 17 ttsou
[..] Decoding base: 
360 17 ttsou
[..] Decoding SIMD: 
361 17 ttsou
[..] Code N 3
362 17 ttsou
[..] Code K 7
363 17 ttsou
OK
364 17 ttsou
[.] Random vector checks:
365 19 ttsou
[.] Testing baseline:
366 19 ttsou
[..] Encoding / Decoding 10000 cycles:
367 19 ttsou
[.] Elapsed time........................ 11.822688 secs
368 17 ttsou
[.] Rate................................ 0.378932 Mbps
369 17 ttsou
[.] Testing SIMD:
370 17 ttsou
[..] Encoding / Decoding 10000 cycles:
371 17 ttsou
[.] Elapsed time........................ 0.550423 secs
372 17 ttsou
[.] Rate................................ 8.139195 Mbps
373 17 ttsou
[.] Speedup............................. 21.479277
374 41 sylvain
</pre>
375 17 ttsou
376 41 sylvain
*!ArndaleBoard (ARM Cortex-A15 1.7 GHz)*
377 17 ttsou
378 17 ttsou
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
379 17 ttsou
380 41 sylvain
<pre>
381 17 ttsou
--- Floating point to integer conversions
382 17 ttsou
-- Testing 40000 iterations of 3120 values
383 17 ttsou
- Measuring conversion time
384 17 ttsou
- Elapsed time base...                 0.384097 secs
385 17 ttsou
- Validating SSE conversion results... PASS
386 17 ttsou
- Measuring conversion time
387 17 ttsou
- Elapsed time SSE ...                 0.100877 secs
388 17 ttsou
- Quotient...                          3.807578
389 41 sylvain
</pre>
390 17 ttsou
391 41 sylvain
<pre>
392 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
393 17 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
394 17 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
395 17 ttsou
[.] Pre computed vector checks:
396 17 ttsou
[..] Encoding: OK
397 17 ttsou
[..] Decoding base: 
398 17 ttsou
[..] Decoding SIMD: 
399 17 ttsou
[..] Code N 3
400 17 ttsou
[..] Code K 7
401 17 ttsou
OK
402 17 ttsou
[.] Random vector checks:
403 17 ttsou
[.] Testing baseline:
404 17 ttsou
[..] Encoding / Decoding 10000 cycles:
405 17 ttsou
[.] Elapsed time........................ 5.371288 secs
406 17 ttsou
[.] Rate................................ 0.834064 Mbps
407 3 ttsou
[.] Testing SIMD:
408 3 ttsou
[..] Encoding / Decoding 10000 cycles:
409 3 ttsou
[.] Elapsed time........................ 1.016621 secs
410 3 ttsou
[.] Rate................................ 4.406755 Mbps
411 3 ttsou
[.] Speedup............................. 5.283471
412 41 sylvain
</pre>
413 3 ttsou
414 41 sylvain
*!BeagleBoard-xM (ARM Cortex-A8 800 MHz)*
415 41 sylvain
<pre>
416 5 ttsou
--- Floating point to integer conversions
417 3 ttsou
-- Testing 40000 iterations of 3120 values
418 3 ttsou
- Measuring conversion time
419 3 ttsou
- Elapsed time base...                  6.292542 secs
420 4 ttsou
- Validating SIMD conversion results... PASS
421 3 ttsou
- Measuring conversion time
422 3 ttsou
- Elapsed time SIMD ...                 0.839081 secs
423 3 ttsou
- Quotient...                           7.499326
424 41 sylvain
</pre>
425 1 ttsou
426 41 sylvain
<pre>
427 31 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
428 31 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
429 31 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
430 31 ttsou
[.] Pre computed vector checks:
431 31 ttsou
[..] Encoding: OK
432 31 ttsou
[..] Decoding base: 
433 31 ttsou
[..] Decoding SIMD: 
434 31 ttsou
[..] Code N 3
435 31 ttsou
[..] Code K 7
436 1 ttsou
OK
437 32 ttsou
[.] Random vector checks:
438 32 ttsou
[.] Testing baseline:
439 32 ttsou
[..] Encoding / Decoding 10000 cycles:
440 32 ttsou
[.] Elapsed time........................ 21.963257 secs
441 32 ttsou
[.] Rate................................ 0.203977 Mbps
442 32 ttsou
[.] Testing SIMD:
443 32 ttsou
[..] Encoding / Decoding 10000 cycles:
444 32 ttsou
[.] Elapsed time........................ 3.083282 secs
445 32 ttsou
[.] Rate................................ 1.452997 Mbps
446 32 ttsou
[.] Speedup............................. 7.123337
447 41 sylvain
</pre>
448 32 ttsou
449 32 ttsou
450 41 sylvain
*Full Results*
451 32 ttsou
452 41 sylvain
"[http://tsou.cc/gsm/shuttle.txt":http://tsou.cc/gsm/haswell.txt]
453 31 ttsou
454 41 sylvain
"[http://tsou.cc/gsm/beagle.txt":http://tsou.cc/gsm/arndale.txt]
455 1 ttsou
456 30 ttsou
457 1 ttsou
458 41 sylvain
h2. Authors
459 1 ttsou
460 1 ttsou
461 41 sylvain
[[OsmoTRX]] is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the [[OpenBTS]] project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)