Project

General

Profile

Actions

GettingStarted » History » Revision 12

« Previous | Revision 12/22 (diff) | Next »
horiz0n, 02/19/2016 10:50 PM


PageOutline = Getting Started =

Prerequisites

You must first prepare your system by installing the required development packages.

For debian/ubuntu:

{{{
apt-get install build-essential libtool autoconf git-core pkg-config libfftw3-dev
}}}

If you want to capture samples off the air, you'll also need gnuradio and uhd. Installing those is outside the scope of this page, refer to the GNURadio / Ettus documentation.

Compiling the software

=== libosmocore ===

You obviously need to install our main utility library:

{{{
git clone git://git.osmocom.org/libosmocore
cd libosmocore
autoreconf -i -f
./configure
make
sudo make install
cd ..
}}}

=== libosmo-dsp ===

Then you need to install our new Software Defined Radio helper library:

{{{
git clone git://git.osmocom.org/libosmo-dsp
cd libosmo-dsp
autoreconf -i -f
./configure
make
sudo make install
cd ..
}}}

=== osmo-gmr ===

And finally compile the main Osmocom GMR software stack:

{{{
git clone git://git.osmocom.org/osmo-gmr
cd osmo-gmr
autoreconf -i -f
./configure
make
cd ..
}}}

=== Capture tool ===

The current version of the capture tool is not integrated with the main autotool process yet and has to be built separately:

{{{
cd osmo-gmr/utils/gmr_multi_rx
make TARGET=uhd
cd ../../..
}}}

There are several possible targets depending on your hardware: * usrp: To use the libusrp drivers for the USRP1 hardware (gnuradio has to be compiled with gr-usrp enabled) * uhd: For using any ettus hardware (see [http://code.ettus.com/redmine/ettus/projects/uhd/wiki UHD Wiki] for build instructions) * fcd: To use the specific Fun Cube Dongle Pro drivers ([https://github.com/csete/gr-fcd gr-fcd] has to be installed)

=== Wireshark ===

The best way to see the packets is using wireshark. Releases version of wireshark might not include GMR-1 support yet. The official trunk has a good support already merged and you can try to use that, but it's very likely that our local wireshark clone has a more recent version in a {{{sylvain/gmr}}} branch.

If you want the latest dissector version, you may need to build wireshark from sources, using the {{{sylvain/gmr}}} branch of our local wireshark git. If that branch doesn't exist, that means all current patch are in wireshark mainline and you can use their trunk directly. (Refer to wireshark doc for that).

{{{
git clone git://git.osmocom.org/wireshark
cd wireshark
git checkout sylvain/gmr
./autogen.sh
./configure
make
sudo make install
cd ..
}}}

Running the software

=== Capturing samples ===

You need to capture samples off the air and of course "there's an app for that".
For a first try the easier is to lookup a beam that match your geographic area by looking at [http://gmr.osmocom.org/trac/wiki/Thuraya_Beams Thuraya_Beams] and the associated map.

Depending on the target hw you selected, options might vary. Example below is for the UHD version. You can lookup the available options using {{{gmr_multi_rx -h}}} .

This example will capture ARFCN 941 and 942 for 10 second using the 'B' side daughterboard and the RX2 input :

{{{
./gmr_multi_rx --gmr1-dl 941 942 -a RX2 -S B:0 -T 10
}}}

The given channels will be frequency shifted, filtered, resampled and finally written to files with the given --prefix (/tmp/ by default). The file names will be autogenerated based on ARFCN and final sample rate.

A few notes concerning multi ARFCN capture: * All the ARFCN need to fit within the bandwidth of your device (so you can't get ARFCN1 and 1007 at once for example) * It can be pretty CPU intensive depending on the # of ARFCNs and how much they're spaced.

==== [http://tetra.osmocom.org/trac/wiki/Funcube_Dongle FunCube Dongle] Build ==== {{{
./gmr_multi_rx --gain 30 --gmr1-dl 941 942 943
}}}

  • when receiving 3 consecutive channels, the middle channel will be distorted by the center peak caused by dc offset / iq imbalance
  • when receiving 2 channels, each channel will have a small contribution of the center peak on the right or left side.
  • best results may be achieved when receiving only one channel.

==== Default USRP clock ====

{{{
./gmr_multi_rx --gain 45 --gmr1-dl 941 942 943
}}}

Only 75% of the master output rate will be used on the usrp/uhd builds, because of insufficient attenuation of the fpga channelizer at filter edges.

==== Modified USRP clocks ====

  • use --mcr to tell custom fpga frequency in Hz

{{{
./gmr_multi_rx --gain 45 --gmr1-dl 941 942 943 --mcr 52e6
}}}

  • mcr of 59.904e6 Hz is gmr1-friendly, thus allowing to save on interpolation stage

{{{
./gmr_multi_rx --gain 45 --gmr1-dl 941 942 943 --mcr 59.904e6
}}}

==== RTL SDR dongles ====

The attached gnuradio flowgraph has been tested and works well for ARFCN 1007. A decent LNA mighr be required to be able to receive Thuraya signals. It is essential to adjust "corr_ppm" according to your dongle's frequency error. For recording, set the "arfcn" value and enable the file sink before launching the flowgraph.

=== Analyzing them ===

  • Launch wireshark and listen to the lo interface * Make sure to use the proper version (see above) * Also make sure you have the rights to capture on lo
  • Run the {{{gmr_rx}}} compiled in the {{{src/}}} directory on the generated files: * {{{gmr1_rx 4 /tmp/gmr1-dl-977-sps93600.cfile}}}
  • View packets in wireshark using gmr1_bcch.* filters
Files (1)
osmo-gmr-rtl.grc osmo-gmr-rtl.grc 19.1 KB gnuradio flowgraph for a single GMR channel horiz0n, 01/02/2013 10:30 PM

Updated by horiz0n about 8 years ago · 12 revisions

Add picture from clipboard (Maximum size: 48.8 MB)