Project

General

Profile

OsmoTRX » History » Version 34

ipse, 02/19/2016 10:47 PM
Add TOC

1 34 ipse
[[PageOutline]]
2 1 ttsou
= OsmoTRX =
3 1 ttsou
4 1 ttsou
OsmoTRX is a software-defined radio transceiver that implements the Layer 1 physical layer of a BTS comprising the following 3GPP specifications:
5 1 ttsou
 * TS 05.01 "Physical layer on the radio path"
6 1 ttsou
 * TS 05.02 "Multiplexing and Multiple Access on the Radio Path"
7 1 ttsou
 * TS 05.04 "Modulation"
8 1 ttsou
 * TS 05.10 "Radio subsystem synchronization"
9 1 ttsou
10 29 ttsou
OsmoTRX is based on the OpenBTS transceiver, but setup to operate independently with the purpose of using with non-OpenBTS software and projects. Currently there are numerous features contained in OsmoTRX that extend the functionality of the OpenBTS transceiver. These features include enhanced support for various embedded platforms - notably ARM - and dual channel diversity support for the Fairwaves UmTRX. Most of these features will eventually be merged into mainline OpenBTS, but development will occur primarily on OsmoTRX.
11 6 ttsou
12 6 ttsou
== Features ==
13 6 ttsou
14 16 ttsou
'''Intel SSE Support'''
15 6 ttsou
* SSE3
16 6 ttsou
* SSE4.1
17 6 ttsou
18 20 ttsou
On Intel processors, OsmoTRX makes heavy use of the Streaming SIMD Extensions (SSE) instruction set. Accelerated operations include pulse shape filtering, resampling, sequence correlation, and many other signal processing operations. SSE3 is the minimum requirement for accelerated use.
19 1 ttsou
20 26 ttsou
SSE3 is present in the majority of Intel processors since later versions of the Pentium 4 architecture and is also present on low power Atom processors. Support is automatically detected at build time. For additional performance information, please see the performance and benchmarks section.
21 20 ttsou
22 29 ttsou
'''ARM Support'''
23 6 ttsou
* NEON
24 1 ttsou
* NEON-VFPv4
25 6 ttsou
26 20 ttsou
OsmoTRX runs on a variety of ARM processors with and without NEON coprocessors. Like SSE on Intel processors, NEON provides acceleration with SIMD vectorized instructions.
27 1 ttsou
28 20 ttsou
Tested popular architectures include ARM11 (Raspberry Pi), Cortex-A8 (!BeagleBoard), and Cortex-A15 (!ArndaleBoard). Loosely speaking, these platforms are representative of low cost embedded devices, mid-level handsets, and high-end smartphones respectively. Similarly, in order, these platforms include no NEON coprocessor, standard NEON, and NEON-VFPv4. The latter NEON variation, VFPv4, provides additional fused-multiply-accumulate (FMA) instructions useful for many DSP operations.
29 20 ttsou
30 26 ttsou
NEON support must be enabled by the user at build time. For additional information, please see the configuration and performance and benchmarks sections.
31 20 ttsou
32 6 ttsou
'''Dual Channel (UmTRX only)'''
33 7 ttsou
34 7 ttsou
Two dual channel modes are available: standard dual channel mode and diversity. In standard dual channel mode, each RF
35 7 ttsou
path of the dual channel device - currently only UmTRX - supports a different ARFCN. Each path operates independently a
36 28 ttsou
nd operates similarly to two separate devices. GSM channel capacity in this mode is doubled. This option can be configured at run time from the command line.
37 1 ttsou
38 8 ttsou
'''Dual Channel Diversity (UmTRX only)'''
39 1 ttsou
40 28 ttsou
Diversity mode is similar to the standard dual channel mode except each antenna supports both ARFCN channels. In this case, the receiver sample bandwidth is widened to handle both ARFCN's and subsequently converted and demultiplexed into separate sample streams. Each GSM receive path is fed dual signals, where antenna selection diversity is performed by taking the stronger signal on a burst-by-burst basis. This diversity setup improves uplink reception performance in multipath fading environments.
41 16 ttsou
42 28 ttsou
Limitations are increased CPU utilization and that ARFCN spacing is restricted (currently at 400 kHz) by the receiver sampling bandwidth. Setting the ARFCN spacing beyond the sampling limit will disable the diversity path and operate in standard dual channel mode. This options can be configured at run time from the command line.
43 20 ttsou
44 33 ttsou
'''Improved Receiver'''
45 30 ttsou
46 30 ttsou
OsmoTRX utilizes a recently updated receive burst detection algorithm that provides greater sensitivity and reliability than the previous approach, which relied on energy detection for the initial stage of burst acquisition.
47 30 ttsou
48 30 ttsou
The limitation of the previous approach was that it was slow to adapt to highly transient power levels and false burst detection in challenging situations such as receiver saturation, which may occur in close range lab testing. The other issue was that a high degree of level tuning was often necessary to operate reliably.
49 30 ttsou
50 30 ttsou
The current receiver code removes those limitations. Noise and signal level measurements are also now handled in a more responsive manner.
51 30 ttsou
52 16 ttsou
'''Low Phase Error Modulator'''
53 16 ttsou
54 1 ttsou
The default GSM downlink signal is configured for low distortion using a linearized GMSK modulator. The implementation is based on a two pulse Laurent approximation of continuous phase modulated (CPM) signals. The baseband output signal measures with very low phase error and is capable of passing industry spectrum mask requirements. Please note that actual performance will depend strongly on the particular device in use.
55 1 ttsou
56 1 ttsou
Theoretical details can be found in the report on [http://tsou.cc/gsm/report_gmsk.pdf GMSK]. Octave / Matlab code for [http://tsou.cc/gsm/laurent.m pulse generation] is also available.
57 28 ttsou
58 28 ttsou
This option can be enabled or disabled at run time from the command line.
59 16 ttsou
60 20 ttsou
Very Low Phase Error (Ettus Research N200)
61 1 ttsou
62 1 ttsou
[[Image(http://tsou.cc/gsm/osmo-trx-phase75.gif)]]
63 1 ttsou
64 21 ttsou
Spectrum Mask (Ettus Research N200)
65 1 ttsou
66 1 ttsou
[[Image(http://tsou.cc/gsm/osmo-trx-spectrum75.gif)]]
67 1 ttsou
68 20 ttsou
== RF Hardware support ==
69 1 ttsou
70 20 ttsou
Multiple RF devices are currently supported. These include USRP family products from Ettus Research, and the UmTRX from Fairwaves.
71 1 ttsou
72 20 ttsou
||'''Fairwaves'''||'''Notes'''||
73 20 ttsou
||UmTRX||Dual channel||
74 20 ttsou
75 20 ttsou
All Ettus Research devices are supported.
76 20 ttsou
77 20 ttsou
||'''Ettus Research'''||'''Notes'''||
78 20 ttsou
||USRP1||Requires legacy libusrp driver and clocking modification||
79 20 ttsou
||USRP2||10 MHz external reference required||
80 1 ttsou
||B100||
81 1 ttsou
||B110||
82 20 ttsou
||B200||10 MHz external reference recommended||
83 20 ttsou
||B210||* Dual channel, 10 MHz external reference recommended||
84 1 ttsou
||N200||
85 1 ttsou
||N210||
86 1 ttsou
||E100||
87 1 ttsou
||E110||
88 1 ttsou
89 20 ttsou
* Ettus B210 dual channel support with OsmoTRX is currently unavailable, but is expected to be added at a later time.
90 20 ttsou
91 1 ttsou
== Embedded Platform Support ==
92 1 ttsou
93 20 ttsou
OsmoTRX has been tested on the multiple embedded platforms representing a wide range of device types. Low cost ARM devices are generally limited by memory and I/O as much CPU utilization.
94 1 ttsou
95 20 ttsou
Running a full or near full ARFCN configuration (7 simultaneous TCH channels with Combination V) may require running the GSM stack remotely, which can be configured at runtime on the command line. This limitation appears to be scheduling related more so than lack of CPU resources, and may be resolved at a later time.
96 20 ttsou
97 20 ttsou
||'''Platform'''||'''SoC'''||'''Processor'''||'''SIMD/FPU'''||'''Testing Notes'''
98 20 ttsou
||!ArndaleBoard||Samsung Exynos 5250||ARM Cortex-A15||NEON-VFPv4||7 TCH||
99 21 ttsou
||!BeagleBoard-xM||Texas Instruments OMAP3||ARM Cortex-A8||NEON||7 TCH, remote OsmoBTS stack||
100 21 ttsou
||Ettus E100||Texas Instruments OMAP3||ARM Cortex-A8||NEON||7 TCH, remote OsmoBTS stack||
101 21 ttsou
||Raspberry Pi||Broadcom BCM2835||ARM11||VFP||2 TCH, remote OsmoBTS stack||
102 1 ttsou
||Shuttle PC||NA||Intel Atom D2550||SSE3||Dual channel, 15 TCH||
103 20 ttsou
104 25 ttsou
All embedded plaforms were tested with low-phase error modulator disabled. Use of the more accurate modulator on embedded platforms has not been extensively tested.
105 19 ttsou
106 19 ttsou
== Mailing List ==
107 18 ttsou
108 1 ttsou
For development purposes, OsmoTRX is discussed on both OpenBTS and OpenBSC mailing lists at openbts-discuss@lists.sourceforge.net and openbsc@lists.osmocom.org respectively.
109 1 ttsou
110 22 ttsou
Please direct questions and bug reports to the list appropriate for the GSM stack being used.
111 19 ttsou
112 16 ttsou
Subscription information is available at [https://lists.sourceforge.net/lists/listinfo/openbts-discuss] and [http://lists.osmocom.org/mailman/listinfo/openbsc/].
113 19 ttsou
114 19 ttsou
== GPRS support ==
115 16 ttsou
116 1 ttsou
OsmoTRX supports GPRS through OsmoBTS.
117 16 ttsou
118 1 ttsou
For GPRS support with OpenBTS, please use the transceiver supplied with OpenBTS.
119 1 ttsou
120 1 ttsou
== Source code ==
121 16 ttsou
122 1 ttsou
The source code is available from git.osmocom.org (module osmo-trx).
123 1 ttsou
124 1 ttsou
Public read-only access is available via
125 18 ttsou
 git clone git://git.osmocom.org/osmo-trx
126 1 ttsou
You can browse it via cgit: http://cgit.osmocom.org/cgit/osmo-trx/
127 18 ttsou
128 18 ttsou
== Configuration and Build ==
129 19 ttsou
130 1 ttsou
The only package dependency is the Universal Hardware Driver (UHD), which is available from Ettus Research or Fairwaves depending on the device. Please note that the UHD implementation must match hardware (i.e. Ettus Research UHD for USRP devices and Fairwaves UHD with UmTRX). The one device that does not use the UHD driver is the USRP1, which is supported through the legacy libusrp driver provided in GNU Radio 3.4.2.
131 1 ttsou
132 18 ttsou
'''Intel Platforms (All)'''
133 18 ttsou
134 18 ttsou
Intel SSE support is automatically detected on Intel x86 platforms. No user intervention is necessary. The general configuration defaults to the low phase error modulator. Atom users may wish to use the low-CPU utilization modulator, which can be later enabled from the command line at runtime.
135 18 ttsou
{{{
136 18 ttsou
$ ./configure
137 18 ttsou
...
138 1 ttsou
checking whether mmx is supported... yes
139 18 ttsou
checking whether sse is supported... yes
140 18 ttsou
checking whether sse2 is supported... yes
141 18 ttsou
checking whether sse3 is supported... yes
142 18 ttsou
checking whether ssse3 is supported... yes
143 18 ttsou
checking whether sse4.1 is supported... yes
144 1 ttsou
checking whether sse4.2 is supported... yes
145 19 ttsou
...
146 18 ttsou
}}}
147 18 ttsou
148 18 ttsou
'''ARM Platforms with NEON'''
149 18 ttsou
150 18 ttsou
Many popular ARM development boards fall under this category including !BeagleBoard, !PandaBoard, and Ettus E100 USRP. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON support must be manually enabled.
151 18 ttsou
{{{
152 19 ttsou
$ ./configure --with-neon
153 18 ttsou
}}}
154 18 ttsou
155 18 ttsou
'''ARM Platforms with NEON-VFPv4'''
156 18 ttsou
157 18 ttsou
Currently very few development platforms support this instruction set, which is seen mainly in high end smartphones and tablets. Available development boards are !ArndaleBoard and ODROID-XU. This option will disable the low phase error modulator, which can be re-enabled at runtime. NEON-VFPv4 support must be manually enabled.
158 18 ttsou
{{{
159 18 ttsou
$ ./configure --with-neon-vfpv4
160 18 ttsou
}}}
161 18 ttsou
162 18 ttsou
'''ARM Platforms without NEON'''
163 18 ttsou
164 18 ttsou
This configuration mainly targets the Raspberry Pi. ARM platforms without NEON vector units are almost always very slow processors, and generally not very suitable for running OsmoTRX. Running OsmoTRX on a Raspberry Pi, however, is possible along with limited TCH (voice) channel support. Currently this configuration requires minor code changes.
165 1 ttsou
166 24 ttsou
Coming soon...
167 18 ttsou
168 16 ttsou
'''Build and Install'''
169 16 ttsou
170 16 ttsou
After configuration, installation is simple.
171 16 ttsou
172 16 ttsou
{{{
173 18 ttsou
$ make
174 19 ttsou
$ sudo make install
175 16 ttsou
}}}
176 16 ttsou
177 16 ttsou
== Running ==
178 16 ttsou
179 16 ttsou
OsmoTRX can be configured with a variety of options on the command line. In most cases, the default settings will suffice. Notable options include UHD device argument passing, which is often useful for using network based devices with firewalls, and external 10 MHz reference support.
180 16 ttsou
181 16 ttsou
{{{
182 16 ttsou
$ osmo-trx -h
183 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.005.004-140-gfb32ed16
184 16 ttsou
185 16 ttsou
Options:
186 16 ttsou
  -h    This text
187 16 ttsou
  -a    UHD device args
188 16 ttsou
  -l    Logging level (EMERG, ALERT, CRT, ERR, WARNING, NOTICE, INFO, DEBUG)
189 16 ttsou
  -i    IP address of GSM core
190 16 ttsou
  -p    Base port number
191 16 ttsou
  -d    Enable dual channel diversity receiver
192 16 ttsou
  -x    Enable external 10 MHz reference
193 16 ttsou
  -s    Samples-per-symbol (1 or 4)
194 16 ttsou
  -c    Number of ARFCN channels (default=1)
195 16 ttsou
}}}
196 16 ttsou
197 16 ttsou
{{{
198 16 ttsou
$ osmo-trx -a "addr=192.168.10.2"
199 16 ttsou
linux; GNU C++ version 4.8.1 20130603 (Red Hat 4.8.1-1); Boost_105300; UHD_003.004.000-b14cde5
200 16 ttsou
201 16 ttsou
Config Settings
202 16 ttsou
   Log Level............... INFO
203 16 ttsou
   Device args............. addr=192.168.10.2
204 16 ttsou
   TRX Base Port........... 5700
205 1 ttsou
   TRX Address............. 127.0.0.1
206 16 ttsou
   Channels................ 1
207 1 ttsou
   Samples-per-Symbol...... 4
208 1 ttsou
   External Reference...... Disabled
209 16 ttsou
   Diversity............... Disabled
210 16 ttsou
211 16 ttsou
-- Opening a UmTRX device...
212 16 ttsou
-- Current recv frame size: 1472 bytes
213 16 ttsou
-- Current send frame size: 1472 bytes
214 16 ttsou
-- Setting UmTRX 4 SPS
215 19 ttsou
-- Transceiver active with 1 channel(s)
216 13 ttsou
}}}
217 19 ttsou
218 19 ttsou
== Benchmarks ==
219 17 ttsou
220 13 ttsou
A variety of performance benchmarks are available for various code optimizations. These include floating point - integer conversions, convolution, and convolutional decoding. Note that convolutional decoding does not take place in OsmoTRX, but one stop higher in the Layer 1 stack - either in OsmoBTS or OpenBTS core.
221 13 ttsou
222 1 ttsou
Selected benchmark results are provided below. All tests are run on a single core only.
223 24 ttsou
224 13 ttsou
225 13 ttsou
'''Intel Haswell (i7 4770K 3.5 GHz)'''
226 13 ttsou
227 13 ttsou
{{{
228 10 ttsou
--- Floating point to integer conversions
229 10 ttsou
-- Testing 40000 iterations of 3120 values
230 1 ttsou
- Measuring conversion time
231 1 ttsou
- Elapsed time base...                  0.065508 secs
232 1 ttsou
- Validating SIMD conversion results... PASS
233 1 ttsou
- Measuring conversion time
234 1 ttsou
- Elapsed time SIMD ...                 0.011424 secs
235 1 ttsou
- Speedup...                            5.734244
236 1 ttsou
}}}
237 1 ttsou
238 1 ttsou
{{{
239 1 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
240 1 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
241 1 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
242 3 ttsou
[.] Pre computed vector checks:
243 3 ttsou
[..] Encoding: OK
244 3 ttsou
[..] Decoding base: 
245 3 ttsou
[..] Decoding SIMD: 
246 3 ttsou
[..] Code N 3
247 3 ttsou
[..] Code K 7
248 3 ttsou
OK
249 3 ttsou
[.] Random vector checks:
250 3 ttsou
[.] Testing baseline:
251 3 ttsou
[..] Encoding / Decoding 10000 cycles:
252 3 ttsou
[.] Elapsed time........................ 1.435066 secs
253 3 ttsou
[.] Rate................................ 3.121808 Mbps
254 1 ttsou
[.] Testing SIMD:
255 1 ttsou
[..] Encoding / Decoding 10000 cycles:
256 17 ttsou
[.] Elapsed time........................ 0.073524 secs
257 1 ttsou
[.] Rate................................ 60.932485 Mbps
258 1 ttsou
[.] Speedup............................. 19.518334
259 1 ttsou
}}}
260 1 ttsou
261 17 ttsou
'''Intel Atom (D2500 1.86 GHz)'''
262 17 ttsou
{{{
263 17 ttsou
--- Floating point to integer conversions
264 17 ttsou
-- Testing 40000 iterations of 3120 values
265 17 ttsou
- Measuring conversion time
266 17 ttsou
- Elapsed time base...                 1.147449 secs
267 17 ttsou
- Validating SSE conversion results... PASS
268 17 ttsou
- Measuring conversion time
269 17 ttsou
- Elapsed time SSE ...                 0.347838 secs
270 17 ttsou
- Quotient...                          3.298803
271 17 ttsou
}}}
272 17 ttsou
273 17 ttsou
{{{
274 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
275 17 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
276 17 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
277 17 ttsou
[.] Pre computed vector checks:
278 17 ttsou
[..] Encoding: OK
279 17 ttsou
[..] Decoding base: 
280 17 ttsou
[..] Decoding SIMD: 
281 17 ttsou
[..] Code N 3
282 1 ttsou
[..] Code K 7
283 1 ttsou
OK
284 1 ttsou
[.] Random vector checks:
285 17 ttsou
[.] Testing baseline:
286 17 ttsou
[..] Encoding / Decoding 10000 cycles:
287 17 ttsou
[.] Elapsed time........................ 11.822688 secs
288 17 ttsou
[.] Rate................................ 0.378932 Mbps
289 17 ttsou
[.] Testing SIMD:
290 17 ttsou
[..] Encoding / Decoding 10000 cycles:
291 17 ttsou
[.] Elapsed time........................ 0.550423 secs
292 19 ttsou
[.] Rate................................ 8.139195 Mbps
293 19 ttsou
[.] Speedup............................. 21.479277
294 19 ttsou
}}}
295 17 ttsou
296 17 ttsou
'''!ArndaleBoard (ARM Cortex-A15 1.7 GHz)'''
297 17 ttsou
298 17 ttsou
Please note that the Viterbi implementations on ARM is largely C based with speedup generated primarily through algorithm changes. In comparison, vector optimization on Intel platforms with SSE is currently much more aggressive, which explains the disparity on decoding performance.
299 17 ttsou
300 17 ttsou
{{{
301 17 ttsou
--- Floating point to integer conversions
302 17 ttsou
-- Testing 40000 iterations of 3120 values
303 17 ttsou
- Measuring conversion time
304 17 ttsou
- Elapsed time base...                 0.384097 secs
305 17 ttsou
- Validating SSE conversion results... PASS
306 17 ttsou
- Measuring conversion time
307 17 ttsou
- Elapsed time SSE ...                 0.100877 secs
308 17 ttsou
- Quotient...                          3.807578
309 17 ttsou
}}}
310 17 ttsou
311 17 ttsou
{{{
312 17 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
313 17 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
314 17 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
315 17 ttsou
[.] Pre computed vector checks:
316 17 ttsou
[..] Encoding: OK
317 17 ttsou
[..] Decoding base: 
318 17 ttsou
[..] Decoding SIMD: 
319 17 ttsou
[..] Code N 3
320 17 ttsou
[..] Code K 7
321 17 ttsou
OK
322 17 ttsou
[.] Random vector checks:
323 17 ttsou
[.] Testing baseline:
324 17 ttsou
[..] Encoding / Decoding 10000 cycles:
325 17 ttsou
[.] Elapsed time........................ 5.371288 secs
326 17 ttsou
[.] Rate................................ 0.834064 Mbps
327 17 ttsou
[.] Testing SIMD:
328 17 ttsou
[..] Encoding / Decoding 10000 cycles:
329 17 ttsou
[.] Elapsed time........................ 1.016621 secs
330 17 ttsou
[.] Rate................................ 4.406755 Mbps
331 17 ttsou
[.] Speedup............................. 5.283471
332 17 ttsou
}}}
333 17 ttsou
334 3 ttsou
'''!BeagleBoard-xM (ARM Cortex-A8 800 MHz)'''
335 3 ttsou
{{{
336 3 ttsou
--- Floating point to integer conversions
337 3 ttsou
-- Testing 40000 iterations of 3120 values
338 3 ttsou
- Measuring conversion time
339 3 ttsou
- Elapsed time base...                  6.292542 secs
340 3 ttsou
- Validating SIMD conversion results... PASS
341 3 ttsou
- Measuring conversion time
342 3 ttsou
- Elapsed time SIMD ...                 0.839081 secs
343 5 ttsou
- Quotient...                           7.499326
344 3 ttsou
}}}
345 3 ttsou
346 3 ttsou
{{{
347 4 ttsou
[+] Testing: GSM TCH/AFS 7.95 (recursive, flushed, punctured)
348 3 ttsou
[.] Input length  : ret = 165  exp = 165 -> OK
349 3 ttsou
[.] Output length : ret = 448  exp = 448 -> OK
350 3 ttsou
[.] Pre computed vector checks:
351 3 ttsou
[..] Encoding: OK
352 3 ttsou
[..] Decoding base: 
353 3 ttsou
[..] Decoding SIMD: 
354 3 ttsou
[..] Code N 3
355 3 ttsou
[..] Code K 7
356 3 ttsou
OK
357 3 ttsou
[.] Random vector checks:
358 1 ttsou
[.] Testing baseline:
359 3 ttsou
[..] Encoding / Decoding 10000 cycles:
360 3 ttsou
[.] Elapsed time........................ 21.963257 secs
361 3 ttsou
[.] Rate................................ 0.203977 Mbps
362 3 ttsou
[.] Testing SIMD:
363 1 ttsou
[..] Encoding / Decoding 10000 cycles:
364 1 ttsou
[.] Elapsed time........................ 3.083282 secs
365 17 ttsou
[.] Rate................................ 1.452997 Mbps
366 1 ttsou
[.] Speedup............................. 7.123337
367 1 ttsou
}}}
368 1 ttsou
369 31 ttsou
370 31 ttsou
'''Full Results'''
371 31 ttsou
372 31 ttsou
[http://tsou.cc/gsm/haswell.txt]
373 31 ttsou
374 31 ttsou
[http://tsou.cc/gsm/shuttle.txt]
375 31 ttsou
376 31 ttsou
[http://tsou.cc/gsm/arndale.txt]
377 31 ttsou
378 1 ttsou
[http://tsou.cc/gsm/beagle.txt]
379 32 ttsou
380 32 ttsou
'''Repository'''
381 32 ttsou
382 32 ttsou
Currently the trx-bench repository holds the test files and contains the same NEON and SSE code as OsmoTRX. The test code may be merged into OsmoTRX at a later time, but, for now, it exists as a separate repository. NEON configure options are the same as OsmoTRX.
383 32 ttsou
384 32 ttsou
{{{
385 32 ttsou
$ git clone https://github.com/ttsou/trx-bench.git
386 32 ttsou
387 32 ttsou
$ cd trx-bench
388 32 ttsou
$ autoreconf -i
389 32 ttsou
$ ./configure [--with-neon] [--with-neon-vfp4]
390 32 ttsou
$ make
391 32 ttsou
$ src/conv_test
392 32 ttsou
$ src/convert_test
393 32 ttsou
$ src/convolve_test
394 32 ttsou
}}}
395 31 ttsou
396 1 ttsou
== Authors ==
397 1 ttsou
398 30 ttsou
OsmoTRX is currently developed and maintained by Thomas Tsou with generous support from Fairwaves, the Open Technology Institute, and Ettus Research. The code is derived from the OpenBTS project, which was originally developed by David Burgess and Harvind Samra at Range Networks.
Add picture from clipboard (Maximum size: 48.8 MB)